Title:
|
Fuzzy-valued integrals based on a constructive methodology (English) |
Author:
|
Wu, Hsien-Chung |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
1-23 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The procedures for constructing a fuzzy number and a fuzzy-valued function from a family of closed intervals and two families of real-valued functions, respectively, are proposed in this paper. The constructive methodology follows from the form of the well-known “Resolution Identity” (decomposition theorem) in fuzzy sets theory. The fuzzy-valued measure is also proposed by introducing the notion of convergence for a sequence of fuzzy numbers. Under this setting, we develop the fuzzy-valued integral of fuzzy-valued function with respect to fuzzy-valued measure. Finally, we provide a Dominated Convergence Theorem for fuzzy-valued integrals. (English) |
Keyword:
|
dominated convergence theorem |
Keyword:
|
fuzzy number |
Keyword:
|
fuzzy-valued function |
Keyword:
|
fuzzy-valued integral |
Keyword:
|
resolution identity |
MSC:
|
03E72 |
MSC:
|
28E10 |
idZBL:
|
Zbl 1164.28308 |
idMR:
|
MR2293526 |
DOI:
|
10.1007/s10492-007-0001-x |
. |
Date available:
|
2009-09-22T18:28:12Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134661 |
. |
Reference:
|
[1] T. M. Apostol: Mathematical Analysis, 2nd edition.Addison-Wesley, Reading, 1974. MR 0344384 |
Reference:
|
[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty: Nonlinear Programming.J. Wiley & Sons, New York, 1993. MR 2218478 |
Reference:
|
[3] G. J. Klir, B. Yuan: Fuzzy Sets and Fuzzy Logic: Theory and Applications.Prentice-Hall, Upper Saddle River, 1995. MR 1329731 |
Reference:
|
[4] E. P. Klement: Fuzzy measures assuming their values in the set of fuzzy numbers.J. Math. Anal. Appl. 93 (1983), 312–323. Zbl 0573.28002, MR 0700147, 10.1016/0022-247X(83)90176-2 |
Reference:
|
[5] E. P. Klement: Integration of fuzzy-valued functions.Rev. Roum. Math. Pures Appl. 30 (1985), 375–384. Zbl 0611.28009, MR 0802605 |
Reference:
|
[6] C. V. Negoita, D. A. Ralescu: Applications of Fuzzy Sets to Systems Analysis.Birkhäuser-Verlag, Basel-Stuttgart, 1975. MR 0490083 |
Reference:
|
[7] H. T. Nguyen: A note on extension principle for fuzzy sets.J. Math. Anal. Appl. 64 (1978), 369–380. MR 0480044, 10.1016/0022-247X(78)90045-8 |
Reference:
|
[8] M. L. Puri, D. A. Ralescu: Fuzzy random variables.J. Math. Anal. Appl. 114 (1986), 409–422. MR 0833596, 10.1016/0022-247X(86)90093-4 |
Reference:
|
[9] H. L. Royden: Real Analysis, 3rd edition.Macmillan, New York, 1968. MR 0151555 |
Reference:
|
[10] W. Rudin: Real and Complex Analysis, 3rd edition.McGraw-Hill, New York, 1987. MR 0924157 |
Reference:
|
[11] J. R. Sims, Z. Y. Wang: Fuzzy measures and fuzzy integrals: An overview.Int. J. Gen. Syst. 17 (1990), 157–189. 10.1080/03081079008935106 |
Reference:
|
[12] M. Stojaković: Fuzzy valued measure.Fuzzy Sets Syst. 65 (1994), 95–104. MR 1294043 |
Reference:
|
[13] E. Suárez-Díaz, F. Suárez-García: The fuzzy integral on product spaces for NSA measures.Fuzzy Sets Syst. 103 (1999), 465–472. MR 1669269 |
Reference:
|
[14] M. Sugeno: Theory of fuzzy integrals and its applications.Ph.D. dissertation, Tokyo Institute of Technology, Tokyo, 1974. |
Reference:
|
[15] L. A. Zadeh: Fuzzy Sets.Inf. Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X |
Reference:
|
[16] L. A. Zadeh: The concept of linguistic variable and its application to approximate reasoning I, II and III.Information Sciences 8, 9 (1975), 199–249; 301–357; 43–80. 10.1016/0020-0255(75)90046-8 |
. |