Previous |  Up |  Next

Article

Title: Fuzzy-valued integrals based on a constructive methodology (English)
Author: Wu, Hsien-Chung
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 1
Year: 2007
Pages: 1-23
Summary lang: English
.
Category: math
.
Summary: The procedures for constructing a fuzzy number and a fuzzy-valued function from a family of closed intervals and two families of real-valued functions, respectively, are proposed in this paper. The constructive methodology follows from the form of the well-known “Resolution Identity” (decomposition theorem) in fuzzy sets theory. The fuzzy-valued measure is also proposed by introducing the notion of convergence for a sequence of fuzzy numbers. Under this setting, we develop the fuzzy-valued integral of fuzzy-valued function with respect to fuzzy-valued measure. Finally, we provide a Dominated Convergence Theorem for fuzzy-valued integrals. (English)
Keyword: dominated convergence theorem
Keyword: fuzzy number
Keyword: fuzzy-valued function
Keyword: fuzzy-valued integral
Keyword: resolution identity
MSC: 03E72
MSC: 28E10
idZBL: Zbl 1164.28308
idMR: MR2293526
DOI: 10.1007/s10492-007-0001-x
.
Date available: 2009-09-22T18:28:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134661
.
Reference: [1] T. M.  Apostol: Mathematical Analysis, 2nd edition.Addison-Wesley, Reading, 1974. MR 0344384
Reference: [2] M. S.  Bazaraa, H. D.  Sherali, and C. M.  Shetty: Nonlinear Programming.J. Wiley & Sons, New York, 1993. MR 2218478
Reference: [3] G. J.  Klir, B.  Yuan: Fuzzy Sets and Fuzzy Logic: Theory and Applications.Prentice-Hall, Upper Saddle River, 1995. MR 1329731
Reference: [4] E. P.  Klement: Fuzzy measures assuming their values in the set of fuzzy numbers.J.  Math. Anal. Appl. 93 (1983), 312–323. Zbl 0573.28002, MR 0700147, 10.1016/0022-247X(83)90176-2
Reference: [5] E. P.  Klement: Integration of fuzzy-valued functions.Rev. Roum. Math. Pures Appl. 30 (1985), 375–384. Zbl 0611.28009, MR 0802605
Reference: [6] C. V.  Negoita, D. A.  Ralescu: Applications of Fuzzy Sets to Systems Analysis.Birkhäuser-Verlag, Basel-Stuttgart, 1975. MR 0490083
Reference: [7] H. T.  Nguyen: A note on extension principle for fuzzy sets.J.  Math. Anal. Appl. 64 (1978), 369–380. MR 0480044, 10.1016/0022-247X(78)90045-8
Reference: [8] M. L.  Puri, D. A.  Ralescu: Fuzzy random variables.J.  Math. Anal. Appl. 114 (1986), 409–422. MR 0833596, 10.1016/0022-247X(86)90093-4
Reference: [9] H. L.  Royden: Real Analysis, 3rd edition.Macmillan, New York, 1968. MR 0151555
Reference: [10] W.  Rudin: Real and Complex Analysis, 3rd edition.McGraw-Hill, New York, 1987. MR 0924157
Reference: [11] J. R.  Sims, Z. Y.  Wang: Fuzzy measures and fuzzy integrals: An overview.Int. J.  Gen. Syst. 17 (1990), 157–189. 10.1080/03081079008935106
Reference: [12] M.  Stojaković: Fuzzy valued measure.Fuzzy Sets Syst. 65 (1994), 95–104. MR 1294043
Reference: [13] E.  Suárez-Díaz, F.  Suárez-García: The fuzzy integral on product spaces for NSA measures.Fuzzy Sets Syst. 103 (1999), 465–472. MR 1669269
Reference: [14] M.  Sugeno: Theory of fuzzy integrals and its applications.Ph.D. dissertation, Tokyo Institute of Technology, Tokyo, 1974.
Reference: [15] L. A.  Zadeh: Fuzzy Sets.Inf. Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [16] L. A.  Zadeh: The concept of linguistic variable and its application to approximate reasoning  I, II and III.Information Sciences 8, 9 (1975), 199–249; 301–357; 43–80. 10.1016/0020-0255(75)90046-8
.

Files

Files Size Format View
AplMat_52-2007-1_1.pdf 404.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo