Previous |  Up |  Next

Article

Title: On the description and analysis of measurements of continuous quantities (English)
Author: Viertl, Reinhard
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 3
Year: 2002
Pages: [353]-362
Summary lang: English
.
Category: math
.
Summary: The measurement of continuous quantities is the basis for all mathematical and statistical analysis of phenomena in engineering and science.Therefore a suitable mathematical description of measurement results is basic for realistic analysis methods for such data. Since the result of a measurement of a continuous quantity is not a precise real number but more or less non- precise, it is necessary to use an appropriate mathematical concept to describe measurements. This is possible by the description of a measurement result by a so-called non-precise number. A non-precise number is a generalization of a real number and is defined by a so-called characterizing function. In case of vector valued quantities the concept of so-called non- precise vectors can be used. Based on these concepts more realistic data analysis methods for measurement data are possible. (English)
Keyword: non-precise data
Keyword: hypothesis testing
MSC: 62-07
idZBL: Zbl 1265.62001
idMR: MR1944315
.
Date available: 2009-09-24T19:46:42Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135469
.
Reference: [1] Bandemer H., Näther W.: Fuzzy Data Analysis.Kluwer, Dordrecht 1992 Zbl 0758.62003, MR 1175172
Reference: [2] Dubois D., Kerre E., Mesiar R., Prade H.: Fuzzy Interval Analysis.In: Fundamentals of Fuzzy Sets (D. Dubois, H. Prade, eds.), Kluwer, Boston 2000 Zbl 0988.26020, MR 1890240
Reference: [3] Klir G., Yuan B.: Fuzzy Sets and Fuzzy Logic – Theory and Applications.Prentice Hall, Upper Saddle River, N.J. 1995 Zbl 0915.03001, MR 1329731
Reference: [4] Menger K.: Ensembles flous et fonctions aléatoires, Comptes Rendus Acad.Sci. 232 (1951), 2001–2003 MR 0042082
Reference: [5] Nguyen H.: A note on the extension principle for fuzzy sets, J.Math. Anal. Appl. 64 (1978), 369–380 MR 0480044, 10.1016/0022-247X(78)90045-8
Reference: [6] Viertl R.: Statistical Methods for Non–Precise Data.CRC Press, Boca Raton 1996 Zbl 0853.62004, MR 1382865
Reference: [7] Viertl R.: Non–Precise Data (Encyclopedia Math., Suppl. II). Kluwer, Dordrecht 2000
Reference: [8] Viertl R.: Statistical Inference with Non-Precise Data.In: Encyclopedia of Life Support Systems, UNESCO, Paris, to appear on-line
Reference: [9] Zadeh L.: Fuzzy sets.Information and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [10] Zadeh L.: The concept of a linguistic variable and its applications to approximate reasoning.Parts I, II, III. Inform. Sci. 8 (1975), 199–249 MR 0386369
.

Files

Files Size Format View
Kybernetika_38-2002-3_11.pdf 1.022Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo