Previous |  Up |  Next

Article

Title: Complex calculus of variations (English)
Author: Gondran, Michel
Author: Saade, Rita Hoblos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 2
Year: 2003
Pages: [249]-263
Summary lang: English
.
Category: math
.
Summary: In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to ${\mathbf{C}}^n$ functions in ${\mathbf{C}}$. It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions to complex Hamilton-Jacobi equations, in particular by generalizing the Hopf-Lax formula. (English)
Keyword: complex calculus of variation
Keyword: Hamilton-Jacobi equations
MSC: 06F05
MSC: 30C70
MSC: 35F25
MSC: 49J10
MSC: 49L20
MSC: 93B27
idZBL: Zbl 1249.49002
idMR: MR1996561
.
Date available: 2009-09-24T19:53:16Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135525
.
Reference: [1] Balian R., Bloch C.: Solution of the Schrödinger Equation in Terms of Classical Paths.Academic Press, New York 1974 Zbl 0281.35029, MR 0438937
Reference: [2] Evans L. C.: Partial Differential Equations.(Graduate Studies in Mathematics 19.) American Mathematical Society, 1998 MR 1625845
Reference: [3] Gondran M.: Convergences de fonctions valeurs dans $\Re ^k$ et analyse Minplus complexe.C.R. Acad. Sci., Paris 1999, t. 329, série I, pp. 783–777 MR 1724540, 10.1016/S0764-4442(99)90007-1
Reference: [4] Gondran M.: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes.C.R. Acad. Sci., Paris 2001, t. 332, série I, pp. 677–680 Zbl 1007.49014, MR 1842467, 10.1016/S0764-4442(01)01901-2
Reference: [5] Lions P. L.: Generalized Solutions of Hamilton–Jacobi Equations.(Research Notes in Mathematics 69.) Pitman, London 1982 Zbl 0497.35001, MR 0667669
Reference: [6] Voros A.: The return of the quadratic oscillator.The complex WKB method. Ann. Inst. H. Poincaré Phys. Théor. 39 (1983), 3, 211–338 MR 0729194
.

Files

Files Size Format View
Kybernetika_39-2003-2_13.pdf 1.487Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo