Previous |  Up |  Next

Article

Title: $p$-symmetric bi-capacities (English)
Author: Miranda, Pedro
Author: Grabisch, Michel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 4
Year: 2004
Pages: [421]-440
Summary lang: English
.
Category: math
.
Summary: Bi-capacities have been recently introduced as a natural generalization of capacities (or fuzzy measures) when the underlying scale is bipolar. They allow to build more flexible models in decision making, although their complexity is of order $3^n$, instead of $2^n$ for fuzzy measures. In order to reduce the complexity, the paper proposes the notion of $p$-symmetric bi- capacities, in the same spirit as for $p$-symmetric fuzzy measures. The main idea is to partition the set of criteria (or states of nature, individuals,...) into subsets whose elements are all indifferent for the decision maker. (English)
Keyword: bi-capacity
Keyword: bipolar scales
Keyword: $p$-symmetry
MSC: 03E72
MSC: 03H05
MSC: 28A12
MSC: 28C05
MSC: 28E05
MSC: 28E10
idZBL: Zbl 1249.28021
idMR: MR2102362
.
Date available: 2009-09-24T20:02:29Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135605
.
Reference: [1] Chateauneuf A., Jaffray J.-Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion.Mathematical Social Sciences 17(1989), 263–283 Zbl 0669.90003, MR 1006179, 10.1016/0165-4896(89)90056-5
Reference: [2] Choquet G.: Theory of capacities.Annales de l’Institut Fourier 5 (1953), 131–295 MR 0080760, 10.5802/aif.53
Reference: [3] Denneberg D.: Non-additive Measures and Integral.Kluwer, Dordrecht 1994 MR 1320048
Reference: [4] Dubois D., Prade H.: A class of fuzzy measures based on triangular norms.Internat. J. General Systems 8 (1982), 43–61 Zbl 0473.94023, MR 0671514, 10.1080/03081078208934833
Reference: [5] Grabisch M.: Pattern classification and feature extraction by fuzzy integral.In: 3d European Congress on Intelligent Techniques and Soft Computing (EUFIT, Aachen, Germany, August 1995), pp. 1465–1469
Reference: [6] Grabisch M.: Fuzzy measures and integrals: A survey of applications and recent issues.In: Fuzzy Sets Methods in Information Engineering: A Guide Tour of Applications (D. Dubois, H. Prade, and R. Yager, eds.), 1996
Reference: [8] Grabisch M.: $k$-order additive discrete fuzzy measures and their representation.Fuzzy Sets and Systems 92 (1997), 167–189 Zbl 0927.28014, MR 1486417, 10.1016/S0165-0114(97)00168-1
Reference: [9] Grabisch M., Labreuche C.: Bi-capacities.In: Proceedings of First int. Conf. on Soft Computing and Intelligent Systems (SCIC), Tsukuba (Japan), 2002 Zbl 1208.91029
Reference: [10] Grabisch M., Labreuche C.: Bi-capacities for decision making on bipolar scales.In Proceedings of the Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE) Varenna (Italy), September 2002, pp. 185–190
Reference: [11] Grabisch M., Labreuche, Ch.: Capacities on lattices and $k$-ary capacities.In: 3rd Int. Conf. of the European Soc. for Fuzzy Logic and Technology (EUSFLAT 2003), Zittau, Germany, September 2003, pp. 304–307 MR 1992695
Reference: [12] Hammer P. L., Holzman R.: On approximations of pseudo-boolean functions.Zeitschrift für Operations Research. Mathematical Methods of Operations Research 36 (1992), 3–21 MR 1141602, 10.1007/BF01541028
Reference: [13] Hungerford T. W.: Algebra.Springer-Verlag, Berlin 1980 Zbl 0442.00002, MR 0600654
Reference: [14] Mesiar R.: $k$-order additive measures.Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 7 (1999), 423–428 10.1142/S0218488599000489
Reference: [15] Miranda P., Grabisch M.: $p$-symmetric fuzzy measures.In: Proceedings of Ninth International Conference of Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU), Annecy (France), July 2002, pp. 545–552 Zbl 1068.28013
Reference: [16] Miranda P., Grabisch, M., Gil P.: $p$-symmetric fuzzy measures.Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002), 105–123. Supplement Zbl 1068.28013, MR 1962672, 10.1142/S0218488502001867
Reference: [17] Rota G. C.: On the foundations of combinatorial theory I.Theory of Möbius functions. Z.r Wahrschein.und Verwandte Gebiete 2 (1964), 340–368 Zbl 0121.02406, MR 0174487, 10.1007/BF00531932
Reference: [18] Sugeno M.: Theory of Fuzzy Integrals and Iits Applications.PhD Thesis, Tokyo Institute of Technology, 1974
Reference: [19] Sugeno M., Fujimoto, K., Murofushi T.: A hierarchical decomposition of Choquet integral model.Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 1 (1995), 1–15 Zbl 1232.93010, MR 1321933, 10.1142/S0218488595000025
Reference: [20] Sugeno M., Terano T.: A model of learning based on fuzzy information.Kybernetes 6 (1977), 157–166 10.1108/eb005448
Reference: [21] Tversky A., Kahneman D.: Advances in prospect theory: cumulative representation of uncertainty.J. Risk and Uncertainty 5 (1992), 297–323 Zbl 0775.90106, 10.1007/BF00122574
Reference: [22] Šipoš J.: Integral with respect to a pre-measure.Math. Slovaca 29 (1979), 141–155 MR 0578286
Reference: [23] Weber S.: $\perp $-decomposable measures and integrals for archimedean t-conorms $\perp $.J. Math. Anal. Appl. 101 (1984), 114–138 Zbl 0614.28019, MR 0746230, 10.1016/0022-247X(84)90061-1
Reference: [24] Yager R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making.IEEE Trans. Systems, Man and Cybernetics 18 (1988), 183–190 MR 0931863, 10.1109/21.87068
.

Files

Files Size Format View
Kybernetika_40-2004-4_2.pdf 2.066Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo