Previous |  Up |  Next

Article

Title: Nearness relations in linear spaces (English)
Author: Kalina, Martin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 4
Year: 2004
Pages: [441]-458
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms. (English)
Keyword: nearness relation
Keyword: pseudo-arithmetic mean
Keyword: geometric mean
Keyword: nearness-convergence
Keyword: continuous t-norm
MSC: 03E72
MSC: 40A05
MSC: 40H05
MSC: 46A45
idZBL: Zbl 1249.40001
idMR: MR2102363
.
Date available: 2009-09-24T20:02:37Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135606
.
Reference: [1] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators, New Trends and Applications, Springer-Verlag, Heidelberg – New York 2002, pp. 3–104 Zbl 1039.03015, MR 1936383
Reference: [2] Dobrakovová J.: Nearness, convergence and topology.Busefal 80 (1999), 17–23
Reference: [3] Dobrakovová J.: Nearness based topology.Tatra Mount. Math. Publ. 21 (2001), 163–170 Zbl 0993.54006, MR 1904907
Reference: [4] Janiš V.: Fixed points of fuzzy functions.Tatra Mount. Math. Publ. 12 (1997), 13–19 Zbl 0946.54036, MR 1607143
Reference: [5] Janiš V.: Nearness derivatives and fuzzy differentiability.Fuzzy Sets and Systems 108 (1999), 99–102 Zbl 0934.26013, MR 1714660
Reference: [6] Kalina M.: Derivatives of fuzzy functions and fuzzy derivatives.Tatra Mount. Math. Publ. 12 (1997), 27–34 Zbl 0951.26015, MR 1607135
Reference: [7] Kalina M.: Fuzzy smoothness and sequences of fuzzy smooth functions.Fuzzy Sets and Systems 105 (1999), 233–239 Zbl 0955.26011, MR 1695578
Reference: [8] Kalina M., Dobrakovová J.: Relation of fuzzy nearness in Banach space.In: Proc. East-West Fuzzy Colloquium, Zittau 2002, pp. 26–32
Reference: [9] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms.Fuzzy Sets and Systems 104 (1999), 3–13 Zbl 0953.26008, MR 1685803
Reference: [10] Klement E. P., Mesiar, R., Pap E.: Triangular norms.Trends in Logic, Studia Logica Library 8, Kluwer 2000 Zbl 1087.20041, MR 1790096
Reference: [11] Kolesárová A.: On the comparision of quasi-arithmetic means.Busefal 80 (1999), 30–34
Reference: [12] Mesiar R., Komorníková M.: Aggregation operators.In: Proc. PRIM’96, XI Conference on Applied Mathematics 1996, pp. 193-211
Reference: [13] Micháliková–Rückschlossová T.: Some constructions of aggregation operators.J. Electrical Engrg. 12 (2000), 29–32 Zbl 0973.26018
Reference: [14] Viceník P.: Noncontinuous Additive Generators of Triangular Norms (in Slovak).Ph. D. Thesis. STU Bratislava 2002
.

Files

Files Size Format View
Kybernetika_40-2004-4_3.pdf 1.699Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo