Title:
|
Nearness relations in linear spaces (English) |
Author:
|
Kalina, Martin |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
40 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
[441]-458 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms. (English) |
Keyword:
|
nearness relation |
Keyword:
|
pseudo-arithmetic mean |
Keyword:
|
geometric mean |
Keyword:
|
nearness-convergence |
Keyword:
|
continuous t-norm |
MSC:
|
03E72 |
MSC:
|
40A05 |
MSC:
|
40H05 |
MSC:
|
46A45 |
idZBL:
|
Zbl 1249.40001 |
idMR:
|
MR2102363 |
. |
Date available:
|
2009-09-24T20:02:37Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135606 |
. |
Reference:
|
[1] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators, New Trends and Applications, Springer-Verlag, Heidelberg – New York 2002, pp. 3–104 Zbl 1039.03015, MR 1936383 |
Reference:
|
[2] Dobrakovová J.: Nearness, convergence and topology.Busefal 80 (1999), 17–23 |
Reference:
|
[3] Dobrakovová J.: Nearness based topology.Tatra Mount. Math. Publ. 21 (2001), 163–170 Zbl 0993.54006, MR 1904907 |
Reference:
|
[4] Janiš V.: Fixed points of fuzzy functions.Tatra Mount. Math. Publ. 12 (1997), 13–19 Zbl 0946.54036, MR 1607143 |
Reference:
|
[5] Janiš V.: Nearness derivatives and fuzzy differentiability.Fuzzy Sets and Systems 108 (1999), 99–102 Zbl 0934.26013, MR 1714660 |
Reference:
|
[6] Kalina M.: Derivatives of fuzzy functions and fuzzy derivatives.Tatra Mount. Math. Publ. 12 (1997), 27–34 Zbl 0951.26015, MR 1607135 |
Reference:
|
[7] Kalina M.: Fuzzy smoothness and sequences of fuzzy smooth functions.Fuzzy Sets and Systems 105 (1999), 233–239 Zbl 0955.26011, MR 1695578 |
Reference:
|
[8] Kalina M., Dobrakovová J.: Relation of fuzzy nearness in Banach space.In: Proc. East-West Fuzzy Colloquium, Zittau 2002, pp. 26–32 |
Reference:
|
[9] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms.Fuzzy Sets and Systems 104 (1999), 3–13 Zbl 0953.26008, MR 1685803 |
Reference:
|
[10] Klement E. P., Mesiar, R., Pap E.: Triangular norms.Trends in Logic, Studia Logica Library 8, Kluwer 2000 Zbl 1087.20041, MR 1790096 |
Reference:
|
[11] Kolesárová A.: On the comparision of quasi-arithmetic means.Busefal 80 (1999), 30–34 |
Reference:
|
[12] Mesiar R., Komorníková M.: Aggregation operators.In: Proc. PRIM’96, XI Conference on Applied Mathematics 1996, pp. 193-211 |
Reference:
|
[13] Micháliková–Rückschlossová T.: Some constructions of aggregation operators.J. Electrical Engrg. 12 (2000), 29–32 Zbl 0973.26018 |
Reference:
|
[14] Viceník P.: Noncontinuous Additive Generators of Triangular Norms (in Slovak).Ph. D. Thesis. STU Bratislava 2002 |
. |