Previous |  Up |  Next

Article

Title: Domination in the families of Frank and Hamacher t-norms (English)
Author: Sarkoci, Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 3
Year: 2005
Pages: [349]-360
Summary lang: English
.
Category: math
.
Summary: Domination is a relation between general operations defined on a poset. The old open problem is whether domination is transitive on the set of all t-norms. In this paper we contribute partially by inspection of domination in the family of Frank and Hamacher t-norms. We show that between two different t-norms from the same family, the domination occurs iff at least one of the t-norms involved is a maximal or minimal member of the family. The immediate consequence of this observation is the transitivity of domination on both inspected families of t-norms. (English)
Keyword: domination
Keyword: Frank t-norm
Keyword: Hamacher $t$-norm
MSC: 26D15
idZBL: Zbl 1249.26041
idMR: MR2181423
.
Date available: 2009-09-24T20:09:23Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135660
.
Reference: [1] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings.(Schriftenreihe der Johannes–Kepler–Universität Linz, Volume C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl 1113.03333
Reference: [2] Baets B. De, Mesiar R.: Pseudo-metrics and $T$-equivalences.J. Fuzzy Math. 5 (1997), 471–481 MR 1457163
Reference: [3] Baets B. De, Mesiar R.: $T$-partitions.Fuzzy Sets and Systems 97 (1998), 211–223 Zbl 0930.03070, MR 1645614, 10.1016/S0165-0114(96)00331-4
Reference: [4] Drewniak J., Drygaś, P., Dudziak U.: Relation of domination.In: FSTA 2004 Abstracts, pp. 43–44
Reference: [5] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$.Aequationes Math. 19 (1979), 194–226 Zbl 0444.39003, MR 0556722, 10.1007/BF02189866
Reference: [6] Hamacher H.: Über logische Verknüpfungen unscharfer Aussagen und deren zugehörige Bewertungsfunktionen.Progress in Cybernetics and Systems Research, Hemisphere Publ. Comp., New York 1975, pp. 276–287
Reference: [7] Hamacher H.: Über logische Aggregationen nicht-binär explizierter Entscheidungskriterien.Rita G. Fischer Verlag, Frankfurt 1978
Reference: [8] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [9] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), 11–35 Zbl 1053.03514, MR 1962666, 10.1142/S0218488502001806
Reference: [10] Saminger S.: Aggregation in Evaluation of Computer-assisted Assessment.(Schriftenreihe der Johannes–Kepler–Universität Linz, Volume C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 Zbl 1067.68143
Reference: [11] Sherwood H.: Characterizing dominates on a family of triangular norms.Aequationes Math. 27 (1984), 255–273 Zbl 0598.26032, MR 0762685, 10.1007/BF02192676
Reference: [12] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [13] Valverde L.: On the structure of F-indistinguishability operators.Fuzzy Sets and Systems 17 (1985), 313–328 Zbl 0609.04002, MR 0819367, 10.1016/0165-0114(85)90096-X
.

Files

Files Size Format View
Kybernetika_41-2005-3_6.pdf 1.280Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo