Title:
|
Domination in the families of Frank and Hamacher t-norms (English) |
Author:
|
Sarkoci, Peter |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
41 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
[349]-360 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Domination is a relation between general operations defined on a poset. The old open problem is whether domination is transitive on the set of all t-norms. In this paper we contribute partially by inspection of domination in the family of Frank and Hamacher t-norms. We show that between two different t-norms from the same family, the domination occurs iff at least one of the t-norms involved is a maximal or minimal member of the family. The immediate consequence of this observation is the transitivity of domination on both inspected families of t-norms. (English) |
Keyword:
|
domination |
Keyword:
|
Frank t-norm |
Keyword:
|
Hamacher $t$-norm |
MSC:
|
26D15 |
idZBL:
|
Zbl 1249.26041 |
idMR:
|
MR2181423 |
. |
Date available:
|
2009-09-24T20:09:23Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135660 |
. |
Reference:
|
[1] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings.(Schriftenreihe der Johannes–Kepler–Universität Linz, Volume C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl 1113.03333 |
Reference:
|
[2] Baets B. De, Mesiar R.: Pseudo-metrics and $T$-equivalences.J. Fuzzy Math. 5 (1997), 471–481 MR 1457163 |
Reference:
|
[3] Baets B. De, Mesiar R.: $T$-partitions.Fuzzy Sets and Systems 97 (1998), 211–223 Zbl 0930.03070, MR 1645614, 10.1016/S0165-0114(96)00331-4 |
Reference:
|
[4] Drewniak J., Drygaś, P., Dudziak U.: Relation of domination.In: FSTA 2004 Abstracts, pp. 43–44 |
Reference:
|
[5] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$.Aequationes Math. 19 (1979), 194–226 Zbl 0444.39003, MR 0556722, 10.1007/BF02189866 |
Reference:
|
[6] Hamacher H.: Über logische Verknüpfungen unscharfer Aussagen und deren zugehörige Bewertungsfunktionen.Progress in Cybernetics and Systems Research, Hemisphere Publ. Comp., New York 1975, pp. 276–287 |
Reference:
|
[7] Hamacher H.: Über logische Aggregationen nicht-binär explizierter Entscheidungskriterien.Rita G. Fischer Verlag, Frankfurt 1978 |
Reference:
|
[8] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096 |
Reference:
|
[9] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), 11–35 Zbl 1053.03514, MR 1962666, 10.1142/S0218488502001806 |
Reference:
|
[10] Saminger S.: Aggregation in Evaluation of Computer-assisted Assessment.(Schriftenreihe der Johannes–Kepler–Universität Linz, Volume C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 Zbl 1067.68143 |
Reference:
|
[11] Sherwood H.: Characterizing dominates on a family of triangular norms.Aequationes Math. 27 (1984), 255–273 Zbl 0598.26032, MR 0762685, 10.1007/BF02192676 |
Reference:
|
[12] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314 |
Reference:
|
[13] Valverde L.: On the structure of F-indistinguishability operators.Fuzzy Sets and Systems 17 (1985), 313–328 Zbl 0609.04002, MR 0819367, 10.1016/0165-0114(85)90096-X |
. |