Previous |  Up |  Next

Article

Title: Direct algorithm for pole placement by state-derivative feedback for multi-inputlinear systems - nonsingular case (English)
Author: Abdelaziz, Taha H. S.
Author: Valášek, Michael
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 5
Year: 2005
Pages: [637]-660
Summary lang: English
.
Category: math
.
Summary: This paper deals with the direct solution of the pole placement problem by state-derivative feedback for multi- input linear systems. The paper describes the solution of this pole placement problem for any controllable system with nonsingular system matrix and nonzero desired poles. Then closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results into a formula similar to Ackermann one. Its derivation is based on the transformation of linear multi-input systems into Frobenius canonical form by coordinate transformation, then solving the pole placement problem by state derivative feedback and transforming the solution into original coordinates. The procedure is demonstrated on examples. In the present work, both time- invariant and time-varying systems are treated. (English)
Keyword: pole placement
Keyword: state-derivative feedback
Keyword: linear MIMO systems
Keyword: feedback stabilization
MSC: 93B55
MSC: 93C35
MSC: 93D15
idZBL: Zbl 1249.93082
idMR: MR2192428
.
Date available: 2009-09-24T20:12:08Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135683
.
Reference: [1] Abdelaziz T. H. S., Valášek M.: A direct algorithm for pole placement by state-derivative feedback for single-input linear systems.Acta Polytechnica 43 (2003), 6, 52–60
Reference: [2] Abdelaziz T. H. S., Valášek M.: Pole-placement for SISO linear systems by state-derivative feedback.IEE Proc. Part D: Control Theory & Applications 151 (2004), 4, 377–385
Reference: [3] Noyer M. P. Bayon de, Hanagud S. V.: Single actuator and multi-mode acceleration feedback control.Adaptive Structures and Material Systems, ASME 54 (1997), 227–235
Reference: [4] Noyer M. P. Bayon de, Hanagud S. V.: A Comparison of H2 optimized design and cross-over point design for acceleration feedback control.In: Proc. 39th AIAA/ASME/ASCE/AHS, Structures, Structural Dynamics and Materials Conference, 1998, pp. 3250–3258
Reference: [5] Deur J., Peric N.: A comparative study of servosystems with acceleration feedback.In: Proc. 35th IEEE Industry Applications Conference, Roma 2000, pp. 1533–1540
Reference: [6] Ellis G.: Cures for mechanical resonance in industrial servo systems.In: Proc. PCIM 2001 Conference, Nuermberg 2001
Reference: [7] Horn R. A., Johnson C. R.: Matrix Analysis.Cambridge University Press, Cambridge 1988 Zbl 0801.15001, MR 1084815
Reference: [8] Kautsky J., Nichols N. K., Dooren P. Van: Robust pole assignment in linear state feedback.Internat. J. Control 41 (1985), 1129–1155 MR 0792933, 10.1080/0020718508961188
Reference: [9] Kejval J., Sika, Z., Valášek M.: Active vibration suppression of a machine.In: Proc. Interaction and Feedbacks’2000, Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic, Praha 2000, pp. 75–80
Reference: [10] Kučera V., Loiseau M.: Dynamics assignment by PD state feedback in linear reachable systems.Kybernetika 30 (1994), 2, 153–158 Zbl 0800.93149, MR 1283492
Reference: [11] Lewis F. L.: Applied Optimal Control and Estimation, Digital Design and Implementation.Prentice-Hall and Texas Instruments, Englewood Cliffs, NJ. 1992
Reference: [12] Lewis F. L., Syrmos V. L.: A geometric theory for derivative feedback.IEEE Trans. Automat. Control 36 (1991), 9, 1111–1116 Zbl 0754.93007, MR 1122496, 10.1109/9.83551
Reference: [13] Luenberger D. G.: Canonical forms for linear multivariable systems.IEEE Trans. Automat. Control AC-12 (1967), 290–292 MR 0441429, 10.1109/TAC.1967.1098584
Reference: [14] Olgac N., Elmali H., Hosek, M., Renzulli M.: Active vibration control of distributed systems using delayed resonator with acceleration feedback.Trans. ASME J. Dynamic Systems, Measurement and Control 119 (1997), 380 Zbl 0909.73060, 10.1115/1.2801269
Reference: [15] Preumont A.: Vibration Control of Active Structures.Kluwer, Dordrecht 1998 Zbl 1011.74001, MR 1435029
Reference: [16] Preumont A., Loix N., Malaise, D., Lecrenier O.: Active damping of optical test benches with acceleration feedback.Mach. Vibration 2 (1993), 119–124
Reference: [17] Tuel W. G.: On the transformation to (phase-variable) canonical form.IEEE Trans. Automat. Control AC-11 (1966), 607 10.1109/TAC.1966.1098417
Reference: [18] Valášek M., Olgac N.: An efficient pole placement technique for linear time-variant SISO systems.IEE Control Theory Appl. Proc. D 142 (1995), 451–458 10.1049/ip-cta:19951959
Reference: [19] Valášek M., Olgac N.: Efficient eigenvalue assignments for general linear MIMO systems.Automatica 31 (1995), 1605–1617 Zbl 0843.93030, MR 1359355, 10.1016/0005-1098(95)00091-A
Reference: [20] Valášek M., Olgac N.: Pole placement for linear time-varying non-lexicographically fixed MIMO systems.Automatica 35 (1999), 101–108 Zbl 0959.93020, MR 1827795, 10.1016/S0005-1098(98)00134-4
Reference: [21] Wonham W. M.: On pole assignment in multi-input controllable linear systems.IEEE Trans. Automat. Control AC-12 (1967), 660–665 10.1109/TAC.1967.1098739
.

Files

Files Size Format View
Kybernetika_41-2005-5_6.pdf 3.460Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo