Title:
|
Direct algorithm for pole placement by state-derivative feedback for multi-inputlinear systems - nonsingular case (English) |
Author:
|
Abdelaziz, Taha H. S. |
Author:
|
Valášek, Michael |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
41 |
Issue:
|
5 |
Year:
|
2005 |
Pages:
|
[637]-660 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper deals with the direct solution of the pole placement problem by state-derivative feedback for multi- input linear systems. The paper describes the solution of this pole placement problem for any controllable system with nonsingular system matrix and nonzero desired poles. Then closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results into a formula similar to Ackermann one. Its derivation is based on the transformation of linear multi-input systems into Frobenius canonical form by coordinate transformation, then solving the pole placement problem by state derivative feedback and transforming the solution into original coordinates. The procedure is demonstrated on examples. In the present work, both time- invariant and time-varying systems are treated. (English) |
Keyword:
|
pole placement |
Keyword:
|
state-derivative feedback |
Keyword:
|
linear MIMO systems |
Keyword:
|
feedback stabilization |
MSC:
|
93B55 |
MSC:
|
93C35 |
MSC:
|
93D15 |
idZBL:
|
Zbl 1249.93082 |
idMR:
|
MR2192428 |
. |
Date available:
|
2009-09-24T20:12:08Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135683 |
. |
Reference:
|
[1] Abdelaziz T. H. S., Valášek M.: A direct algorithm for pole placement by state-derivative feedback for single-input linear systems.Acta Polytechnica 43 (2003), 6, 52–60 |
Reference:
|
[2] Abdelaziz T. H. S., Valášek M.: Pole-placement for SISO linear systems by state-derivative feedback.IEE Proc. Part D: Control Theory & Applications 151 (2004), 4, 377–385 |
Reference:
|
[3] Noyer M. P. Bayon de, Hanagud S. V.: Single actuator and multi-mode acceleration feedback control.Adaptive Structures and Material Systems, ASME 54 (1997), 227–235 |
Reference:
|
[4] Noyer M. P. Bayon de, Hanagud S. V.: A Comparison of H2 optimized design and cross-over point design for acceleration feedback control.In: Proc. 39th AIAA/ASME/ASCE/AHS, Structures, Structural Dynamics and Materials Conference, 1998, pp. 3250–3258 |
Reference:
|
[5] Deur J., Peric N.: A comparative study of servosystems with acceleration feedback.In: Proc. 35th IEEE Industry Applications Conference, Roma 2000, pp. 1533–1540 |
Reference:
|
[6] Ellis G.: Cures for mechanical resonance in industrial servo systems.In: Proc. PCIM 2001 Conference, Nuermberg 2001 |
Reference:
|
[7] Horn R. A., Johnson C. R.: Matrix Analysis.Cambridge University Press, Cambridge 1988 Zbl 0801.15001, MR 1084815 |
Reference:
|
[8] Kautsky J., Nichols N. K., Dooren P. Van: Robust pole assignment in linear state feedback.Internat. J. Control 41 (1985), 1129–1155 MR 0792933, 10.1080/0020718508961188 |
Reference:
|
[9] Kejval J., Sika, Z., Valášek M.: Active vibration suppression of a machine.In: Proc. Interaction and Feedbacks’2000, Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic, Praha 2000, pp. 75–80 |
Reference:
|
[10] Kučera V., Loiseau M.: Dynamics assignment by PD state feedback in linear reachable systems.Kybernetika 30 (1994), 2, 153–158 Zbl 0800.93149, MR 1283492 |
Reference:
|
[11] Lewis F. L.: Applied Optimal Control and Estimation, Digital Design and Implementation.Prentice-Hall and Texas Instruments, Englewood Cliffs, NJ. 1992 |
Reference:
|
[12] Lewis F. L., Syrmos V. L.: A geometric theory for derivative feedback.IEEE Trans. Automat. Control 36 (1991), 9, 1111–1116 Zbl 0754.93007, MR 1122496, 10.1109/9.83551 |
Reference:
|
[13] Luenberger D. G.: Canonical forms for linear multivariable systems.IEEE Trans. Automat. Control AC-12 (1967), 290–292 MR 0441429, 10.1109/TAC.1967.1098584 |
Reference:
|
[14] Olgac N., Elmali H., Hosek, M., Renzulli M.: Active vibration control of distributed systems using delayed resonator with acceleration feedback.Trans. ASME J. Dynamic Systems, Measurement and Control 119 (1997), 380 Zbl 0909.73060, 10.1115/1.2801269 |
Reference:
|
[15] Preumont A.: Vibration Control of Active Structures.Kluwer, Dordrecht 1998 Zbl 1011.74001, MR 1435029 |
Reference:
|
[16] Preumont A., Loix N., Malaise, D., Lecrenier O.: Active damping of optical test benches with acceleration feedback.Mach. Vibration 2 (1993), 119–124 |
Reference:
|
[17] Tuel W. G.: On the transformation to (phase-variable) canonical form.IEEE Trans. Automat. Control AC-11 (1966), 607 10.1109/TAC.1966.1098417 |
Reference:
|
[18] Valášek M., Olgac N.: An efficient pole placement technique for linear time-variant SISO systems.IEE Control Theory Appl. Proc. D 142 (1995), 451–458 10.1049/ip-cta:19951959 |
Reference:
|
[19] Valášek M., Olgac N.: Efficient eigenvalue assignments for general linear MIMO systems.Automatica 31 (1995), 1605–1617 Zbl 0843.93030, MR 1359355, 10.1016/0005-1098(95)00091-A |
Reference:
|
[20] Valášek M., Olgac N.: Pole placement for linear time-varying non-lexicographically fixed MIMO systems.Automatica 35 (1999), 101–108 Zbl 0959.93020, MR 1827795, 10.1016/S0005-1098(98)00134-4 |
Reference:
|
[21] Wonham W. M.: On pole assignment in multi-input controllable linear systems.IEEE Trans. Automat. Control AC-12 (1967), 660–665 10.1109/TAC.1967.1098739 |
. |