Previous |  Up |  Next

Article

Title: Eigenstructure assignment by proportional-plus-derivative feedback for second-order linear control systems (English)
Author: Abdelaziz, Taha H. S.
Author: Valášek, Michael
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 5
Year: 2005
Pages: [661]-676
Summary lang: English
.
Category: math
.
Summary: This paper introduces a complete parametric approach for solving the eigenstructure assignment problem using proportional-plus-derivative feedback for second-order linear control systems. In this work, necessary and sufficient conditions that ensure the solvability for the second-order system are derived. A parametric solution to the feedback gain matrix is introduced that describes the available degrees of freedom offered by the proportional-plus-derivative feedback in selecting the associated eigenvectors from an admissible class. These freedoms can be utilized to improve robustness of the closed-loop system. The main advantage of the described approach is that the problem is tackled directly in the second-order form without transformation into the first-order form and without mass matrix inversion and the computation is numerically stable as it uses only the singular value decomposition and simple matrix transformation. Numerical examples are included to show the effectiveness of the proposed approach. (English)
Keyword: eigenstructure assignment
Keyword: second-order systems
Keyword: proportional- plus-derivative feedback
Keyword: feedback stabilization
Keyword: parameterization
MSC: 93B55
MSC: 93C35
MSC: 93D15
idZBL: Zbl 1249.93083
idMR: MR2192429
.
Date available: 2009-09-24T20:12:16Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135684
.
Reference: [1] Balas M. J.: Trends in large space structure control theory: fondest hopes, wildest dreams.IEEE Trans. Automat. Control 27 (1982), 522–535 Zbl 0496.93007, 10.1109/TAC.1982.1102953
Reference: [2] Bhaya A., Desoer C.: On the design of large flexible space structures (LFSS).IEEE Trans. Automat. Control 30 (1985), 1118–1120 Zbl 0574.93044, 10.1109/TAC.1985.1103847
Reference: [3] Chu E. K.: Pole assignment for second-order systems.Mechanical System & Signal Processing 16 (2002), 1, 39–59 Zbl 0925.93311, 10.1006/mssp.2001.1439
Reference: [4] Chu E. K., Datta B. N.: Numerically robust pole assignment for second-order systems.Internat. J. Control 64 (1996), 4, 1113–1127 Zbl 0850.93318, MR 1664806, 10.1080/00207179608921677
Reference: [5] Diweker A. M., Yedavalli R. K: Stability of matrix second-order systems: new conditions and perspectives.IEEE Trans. Automat. Control 44 (1999), 9, 1773–1777 MR 1710122, 10.1109/9.788551
Reference: [6] Duan G. R., Liu G. P.: Complete parametric approach for eigenstructure assignment in a class of second order system.Automatica 38 (2002), 725–729 MR 2131479, 10.1016/S0005-1098(01)00251-5
Reference: [7] Henrion D., Šebek, M., Kučera V.: Robust pole placement for second-order systems: an LMI approach.In: Proc. IFAC Symposium on Robust Control Design, Milan, Italy, 2003
Reference: [8] Y. Y. Kim, Kim H. S., Junkins J. L.: Eigenstructure assignment algorithm for mechanical second-order systems.J. Guidance 22 (1999), 5, 729–731 10.2514/2.4444
Reference: [9] Laub A. J., Arnold W. F.: Controllability and observability criteria for multivariable linear second-order models.IEEE Trans. Automat. Control 29 (1984), 163–165 Zbl 0543.93005, MR 0736913, 10.1109/TAC.1984.1103470
.

Files

Files Size Format View
Kybernetika_41-2005-5_7.pdf 1.766Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo