[1] AHLBRANDT C. D.:
Equivalent boundary value problems for self-adjoint differential systems. J. Differential Equations 9 (1971), 420-435.
MR 0284636 |
Zbl 0218.34020
[2] AHLBRANDT C. D.-HINTON D. B.-LEWIS R. T.:
The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory. J. Math. Anal. Appl. 81 (1981), 234-277.
MR 0618771 |
Zbl 0459.34018
[3] COPPEL W. A.:
Disconjugacy. Lectures Notes in Math. 220, Springer-Verlag, Berlin-Heidelberg, 1971.
MR 0460785 |
Zbl 0224.34003
[4] DOŠLÝ O.:
Transformations of linear Hamiltonian systems preserving oscillatory behaviour. Arch. Math. (Brno) 27b (1991), 211-219.
MR 1189218 |
Zbl 0764.34026
[5] DOŠLÝ O.:
Generalized reciprocity for self-adjoint linear differential equations. Arch. Math. (Brno) 31 (1995), 85-96.
MR 1357977 |
Zbl 0841.34032
[6] DOŠLÝ O.:
Oscillation and spectral properties of a class of singular self-adjoint differential operators. Math. Nachr. 188 (1997), 49-68.
MR 1484668 |
Zbl 0889.34029
[7] DOŠLÝ O.-HILSCHER R.:
Spectral properties of fourth order differential operators. Math. Bohemica 122 (1997), 153-168.
MR 1460945 |
Zbl 0894.34028
[8] GLAZMAN I. M.:
Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Israel Program for Scientific Тranslations; Daniel Davey & Co., Inc, Jerusalem; New York, 1965; 1966.
MR 0190800 |
Zbl 0143.36505
[9] HARТMAN P.:
Self-adjoint, non-oscillatory systems of ordinary, second order, linear differential equations. Duke J. Math. 24 (1956), 25-35.
MR 0082591
[10] HINТON D. B.-LEWIS R. Т.:
Discrete spectra criteria for singular differential operators with middle terms. Math. Proc Cambridge Philos. Soc 77 (1975), 337-347.
MR 0367358
[12] REID W. Т.:
Sturmian Theory for Ordinary Differential Equations. Springeг-Verlag, New York-Berlin-Heidelberg, 1980.
MR 0606199 |
Zbl 0459.34001
[13] STERNBERG R. L.:
Variational methods and nonoscillatory theorems for systems of differential equations. Duke J. Math. 19 (1952), 311-322.
MR 0048668