Previous |  Up |  Next

Article

Title: Uniqueness of weak solutions of the Navier-Stokes equations (English)
Author: Gala, Sadek
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 6
Year: 2008
Pages: 561-582
Summary lang: English
.
Category: math
.
Summary: Consider the Navier-Stokes equation with the initial data $a\in L_{\sigma }^2( \Bbb R^d) $. Let $u$ and $v$ be two weak solutions with the same initial value $a$. If $u$ satisfies the usual energy inequality and if $\nabla v\in L^2(( 0,T) ;\dot X _1(\Bbb R^d)^d)$ where $\dot X_1(\Bbb R^d)$ is the multiplier space, then we have $u=v$. (English)
Keyword: Navier-Stokes equations
Keyword: solution uniqueness
Keyword: weak Leray-Hopf solution
Keyword: multiplier space
MSC: 35D30
MSC: 35Q30
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1199.35274
idMR: MR2469066
DOI: 10.1007/s10492-008-0042-9
.
Date available: 2010-07-20T12:40:11Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140341
.
Reference: [1] Coifman, R., Lions, P. -L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces.J. Math. Pures Appl. 72 (1993), 247-286. Zbl 0864.42009, MR 1225511
Reference: [2] Constantin, P.: Remarks on the Navier-Stokes equations.In: New Perspectives in Turbulence Springer New York (1991), 229-261. MR 1126937
Reference: [3] Foias, C.: Une remarque sur l'unicité des solutions des équations de Navier-Stokes en dimension $n$.Bull. Soc. Math. Fr. 89 (1961), 1-8 French. Zbl 0107.07602, MR 0141902
Reference: [4] Fefferman, C., Stein, E. M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. MR 0447953, 10.1007/BF02392215
Reference: [5] Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr. 4 (1951), German 213-231. MR 0050423, 10.1002/mana.3210040121
Reference: [6] Kato, T.: Strong $L^p$ solutions of the Navier-Stokes equation in Morrey spaces.Bol. Soc. Bras. Mat. 22 (1992), 127-155. MR 1179482, 10.1007/BF01232939
Reference: [7] Kozono, H., Sohr, H.: Remark on uniqueness of weak solutions to the Navier-Stokes equations.Analysis 16 (1996), 255-271. Zbl 0864.35082, MR 1403221, 10.1524/anly.1996.16.3.255
Reference: [8] Kozono, H., Taniuchi, Y.: Bilinear estimates in $BMO$ and the Navier-Stokes equations.Math. Z. 235 (2000), 173-194. Zbl 0970.35099, MR 1785078, 10.1007/s002090000130
Reference: [9] Lemarié-Rieusset, P. G.: Recent Developments in the Navier-Stokes Problem.Chapman & Hall/CRC Boca Raton (2002). Zbl 1034.35093, MR 1938147
Reference: [10] Lemarié-Rieusset, P. G., Gala, S.: Multipliers between Sobolev spaces and fractional differentiation.J. Math. Anal. Appl. 322 (2006), 1030-1054. Zbl 1109.46039, MR 2250634, 10.1016/j.jmaa.2005.07.043
Reference: [11] Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace.Acta. Math. 63 (1934), 193-248 French. MR 1555394, 10.1007/BF02547354
Reference: [12] Murat, F.: Compacité par compensation.Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 5 (1978), 489-507 French. Zbl 0399.46022, MR 0506997
Reference: [13] Masuda, K.: Weak solutions of Navier-Stokes equations.Tôhoku Math. J. 36 (1984), 623-646. Zbl 0568.35077, MR 0767409, 10.2748/tmj/1178228767
Reference: [14] Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations.Arch. Ration. Mech. Anal. 9 (1962), 187-195. Zbl 0106.18302, MR 0136885, 10.1007/BF00253344
Reference: [15] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton Univ. Press Princeton (1993). Zbl 0821.42001, MR 1232192
Reference: [16] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean spaces. Princeton Mathematical series.Princeton University Press Princeton (1971). MR 0304972
Reference: [17] Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, Edinburgh 1979.Res. Notes Math. 39 (1979), 136-212. MR 0584398
Reference: [18] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.North-Holland Amsterdam (1977). Zbl 0383.35057, MR 0609732
Reference: [19] Taylor, M. E.: Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations.Commun. Partial Differ. Equations 17 (1992), 1407-1456. Zbl 0771.35047, MR 1187618, 10.1080/03605309208820892
.

Files

Files Size Format View
AplMat_53-2008-6_4.pdf 314.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo