Title:
|
On the worst scenario method: a modified convergence theorem and its application to an uncertain differential equation (English) |
Author:
|
Harasim, Petr |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
53 |
Issue:
|
6 |
Year:
|
2008 |
Pages:
|
583-598 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We propose a theoretical framework for solving a class of worst scenario problems. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. The main convergence theorem modifies and corrects the relevant results already published in literature. The theoretical framework is applied to a particular problem with an uncertain boundary value problem for a nonlinear ordinary differential equation with an uncertain coefficient. (English) |
Keyword:
|
worst scenario problem |
Keyword:
|
nonlinear differential equation |
Keyword:
|
uncertain input parameters |
Keyword:
|
Galerkin approximation |
MSC:
|
34B15 |
MSC:
|
47H05 |
MSC:
|
47J05 |
MSC:
|
47N20 |
MSC:
|
65L60 |
idZBL:
|
Zbl 1199.47207 |
idMR:
|
MR2469067 |
DOI:
|
10.1007/s10492-008-0043-8 |
. |
Date available:
|
2010-07-20T12:40:54Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140342 |
. |
Reference:
|
[1] Franců, J.: Monotone operators. A survey directed to applications to differential equations.Appl. Math. 35 (1990), 257-301. MR 1065003 |
Reference:
|
[2] Hlaváček, I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to uncertainty in coefficients.J. Math. Anal. Appl. 212 (1997), 452-466. MR 1464890, 10.1006/jmaa.1997.5518 |
Reference:
|
[3] Hlaváček, I.: Reliable solution of elliptic boundary value problems with respect to uncertain data.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3879-3890. MR 1602891, 10.1016/S0362-546X(96)00236-2 |
Reference:
|
[4] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario Method.Elsevier Amsterdam (2004). Zbl 1116.74003, MR 2285091 |
Reference:
|
[5] Hlaváček, I., Křížek, M., Malý, J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168-189. MR 1275952, 10.1006/jmaa.1994.1192 |
Reference:
|
[6] Chleboun, J.: Reliable solution for a 1D quasilinear elliptic equation with uncertain coefficients.J. Math. Anal. Appl. 234 (1999), 514-528. Zbl 0944.35027, MR 1689404, 10.1006/jmaa.1998.6364 |
Reference:
|
[7] Chleboun, J.: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: Sensitivity analysis and numerical examples.Nonlinear Anal., Theory Methods Appl. 44 (2001), 375-388. Zbl 1002.35041, MR 1817101, 10.1016/S0362-546X(99)00274-6 |
Reference:
|
[8] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Longman Scientific & Technical New York (1990). MR 1066462 |
Reference:
|
[9] Zeidler, E.: Applied Functional Analysis. Applications to Mathematical Physics.Springer Berlin (1995). Zbl 0834.46002, MR 1347691 |
Reference:
|
[10] Zeidler, E.: Applied Functional Analysis. Main Principles and Their Applications.Springer New York (1995). Zbl 0834.46003, MR 1347692 |
. |