Article
Keywords:
worst scenario problem; nonlinear differential equation; uncertain input parameters; Galerkin approximation
Summary:
We propose a theoretical framework for solving a class of worst scenario problems. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. The main convergence theorem modifies and corrects the relevant results already published in literature. The theoretical framework is applied to a particular problem with an uncertain boundary value problem for a nonlinear ordinary differential equation with an uncertain coefficient.
References:
[1] Franců, J.:
Monotone operators. A survey directed to applications to differential equations. Appl. Math. 35 (1990), 257-301.
MR 1065003
[2] Hlaváček, I.:
Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to uncertainty in coefficients. J. Math. Anal. Appl. 212 (1997), 452-466.
DOI 10.1006/jmaa.1997.5518 |
MR 1464890
[4] Hlaváček, I., Chleboun, J., Babuška, I.:
Uncertain Input Data Problems and the Worst Scenario Method. Elsevier Amsterdam (2004).
MR 2285091 |
Zbl 1116.74003
[5] Hlaváček, I., Křížek, M., Malý, J.:
On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168-189.
DOI 10.1006/jmaa.1994.1192 |
MR 1275952
[8] Křížek, M., Neittaanmäki, P.:
Finite Element Approximation of Variational Problems and Applications. Longman Scientific & Technical New York (1990).
MR 1066462
[9] Zeidler, E.:
Applied Functional Analysis. Applications to Mathematical Physics. Springer Berlin (1995).
MR 1347691 |
Zbl 0834.46002
[10] Zeidler, E.:
Applied Functional Analysis. Main Principles and Their Applications. Springer New York (1995).
MR 1347692 |
Zbl 0834.46003