Previous |  Up |  Next

Article

Title: The combination technique for a two-dimensional convection-diffusion problem with exponential layers (English)
Author: Franz, Sebastian
Author: Liu, Fang
Author: Roos, Hans-Görg
Author: Stynes, Martin
Author: Zhou, Aihui
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 3
Year: 2009
Pages: 203-223
Summary lang: English
.
Category: math
.
Summary: Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing $N$ for the maximum number of mesh intervals in each coordinate direction, our ``combination'' method simply adds or subtracts solutions that have been computed by the Galerkin FEM on $N \times \sqrt N$, $\sqrt N \times N$ and $\sqrt N \times \sqrt N$ meshes. It is shown that the combination FEM yields (up to a factor $\ln N$) the same order of accuracy in the associated energy norm as the Galerkin FEM on an $N\times N$ mesh, but it requires only $\Cal O(N^{3/2})$ degrees of freedom compared with the $\Cal O(N^2)$ used by the Galerkin FEM. An analogous result is also proved for the streamline diffusion finite element method. (English)
Keyword: convection-diffusion
Keyword: finite element
Keyword: Shishkin mesh
Keyword: two-scale discretization
Keyword: exponential layers
Keyword: Galerkin FEM
MSC: 65F10
MSC: 65N15
MSC: 65N30
MSC: 65N55
MSC: 65Y10
idZBL: Zbl 1212.65443
idMR: MR2530539
DOI: 10.1007/s10492-009-0013-9
.
Date available: 2010-07-20T12:58:20Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140360
.
Reference: [1] Bank, R. E.: Hierarchical bases and the finite element method.Acta Numerica 5 (1996), 1-43. Zbl 0865.65078, MR 1624587, 10.1017/S0962492900002610
Reference: [2] Bungartz, H.-J., Griebel, M.: Sparse grids.Acta. Numerica 13 (2004), 147-269. Zbl 1122.65405, MR 2249147, 10.1017/S0962492904000182
Reference: [3] Bungartz, H.-J., Griebel, M., Rüde, U.: Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems.Comput. Methods Appl. Mech. Eng. 116 (1994), 243-252. MR 1286533, 10.1016/S0045-7825(94)80029-4
Reference: [4] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.SIAM Philadelphia (2002). MR 1930132
Reference: [5] Delvos, F.-J.: d-Variate Boolean interpolation.J. Approximation Theory 34 (1982), 99-114. Zbl 0504.41004, MR 0647256, 10.1016/0021-9045(82)90085-5
Reference: [6] Dobrowolski, M., Roos, H.-G.: A priori estimates for the solution of convection-diffusion problems and interpolation on Shishkin meshes.Z. Anal. Anwend. (1997), 16 1001-1012. Zbl 0892.35014, MR 1615644, 10.4171/ZAA/801
Reference: [7] Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique.J. Comput. Phys. 165 (2000), 694-716. Zbl 0979.65101, MR 1807302, 10.1006/jcph.2000.6627
Reference: [8] Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problem.Iterative Methods in Linear Algebra. Proceedings of the IMASS, International symposium, Brussels, Belgium, April 2-4, 1991 P. de Groen, R. Beauwens North-Holland Amsterdam (1992), 263-281. MR 1159736
Reference: [9] Lin, Q., Yan, N., Zhou, A.: A sparse finite element method with high accuracy I.Numer. Math. 88 (2001), 731-742. Zbl 0989.65134, MR 1836877, 10.1007/PL00005456
Reference: [10] Linß, T.: Uniform superconvergence of a Galerkin finite element method on Shishkin-type meshes.Numer. Methods Partial Differ. Equations 16 (2000), 426-440. MR 1778398, 10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.0.CO;2-R
Reference: [11] Linß, T.: Layer-adapted meshes for convection-diffusion problems.Comput. Methods Appl. Mech. Eng. 192 (2003), 1061-1105. Zbl 1022.76036, MR 1960975, 10.1016/S0045-7825(02)00630-8
Reference: [12] Lin{ß}, T., Stynes, M.: Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem.J. Math. Anal. Appl. 261 (2001), 604-632. Zbl 1200.35046, MR 1853059, 10.1006/jmaa.2001.7550
Reference: [13] Liu, F., Madden, N., Stynes, M., Zhou, A.: A two-scale sparse grid method for a singularly perturbed reaction-diffusion problem in two dimensions.IMA J. Numer. Anal (to appear). Zbl 1188.65153, MR 2557053
Reference: [14] Liu, F., Zhou, A.: Two-scale finite element discretizations for partial differential equations.J. Comput. Math. 24 (2006), 373-392. Zbl 1100.65101, MR 2229717
Reference: [15] Liu, F., Zhou, A.: Localizations and parallelizations for two-scale finite element discretizations.Commun. Pure Appl. Anal. 6 (2007), 757-773. Zbl 1141.65079, MR 2318298, 10.3934/cpaa.2007.6.757
Reference: [16] Liu, F., Zhou, A.: Two-scale Boolean Galerkin discretizations for Fredholm integral equations of the second kind.SIAM J. Numer. Anal. 45 (2007), 296-312. Zbl 1144.65087, MR 2285856, 10.1137/050633007
Reference: [17] Miller, J. J., O'Riordan, E., Shishkin, G. I.: Fitted Numerical Methods for Singular Perturbation Problems.World Scientific Singapore (1996). Zbl 0915.65097, MR 1439750
Reference: [18] Noordmans, J., Hemker, P. W.: Application of an additive sparse-grid technique to a model singular pertubation problem.Computing 65 (2000), 357-378. MR 1811355, 10.1007/s006070070005
Reference: [19] O'Riordan, E., Shishkin, G. I.: A technique to prove parameter-uniform convergence for a singularly perturbed convection-diffusion equation.J. Comput. Appl. Math. 206 (2007), 136-145. Zbl 1117.65145, MR 2333841, 10.1016/j.cam.2006.06.002
Reference: [20] Pflaum, C., Zhou, A.: Error analysis of the combination technique.Numer. Math. 84 (1999), 327-350. Zbl 0942.65122, MR 1730012, 10.1007/s002110050474
Reference: [21] Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations.Springer Berlin (1996). Zbl 0844.65075, MR 1477665
Reference: [22] Stynes, M., O'Riordan, E.: A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem.J. Math. Anal. Appl. 214 (1997), 36-54. Zbl 0917.65088, MR 1645503, 10.1006/jmaa.1997.5581
Reference: [23] Stynes, M., Tobiska, L.: The SDFEM for a convection-diffusion problem with a boundary layer: Optimal error analysis and enhancement of accuracy.SIAM J. Numer. Anal. 41 (2003), 1620-1642. Zbl 1055.65121, MR 2035000, 10.1137/S0036142902404728
Reference: [24] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs.SIAM J. Numer. Anal. 33 (1996), 1759-1777. Zbl 0860.65119, MR 1411848, 10.1137/S0036142992232949
Reference: [25] Yserentant, H.: On the multi-level splitting of finite element spaces.Numer. Math. 49 (1986), 379-412. Zbl 0625.65109, MR 0853662, 10.1007/BF01389538
Reference: [26] Zenger, C.: Sparse grids.In: Parallel Algorithms for Partial Differential Equations (Proc. 6th GAMM-Seminar, Kiel, 1990). Notes Numer. Fluid Mech. 31 (1991), 241-251. Zbl 0763.65091, MR 1167882
Reference: [27] Zhang, Z.: Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems.Math. Comput. 72 (2003), 1147-1177. Zbl 1019.65091, MR 1972731, 10.1090/S0025-5718-03-01486-8
.

Files

Files Size Format View
AplMat_54-2009-3_3.pdf 429.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo