Previous |  Up |  Next

Article

Title: A survey and some new results on the existence of solutions of IPBVPs for first order functional differential equations (English)
Author: Liu, Yuji
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 6
Year: 2009
Pages: 527-549
Summary lang: English
.
Category: math
.
Summary: This paper deals with the periodic boundary value problem for nonlinear impulsive functional differential equation $$ \begin{cases} x'(t)=f(t,x(t),x(\alpha _1(t)),\cdots ,x(\alpha _n(t))) \text {for a.e.} \ t\in [0,T], \Delta x(t_k)=I_k(x(t_k)), \ k=1,\cdots ,m, x(0)=x(T). \end{cases} $$ We first present a survey and then obtain new sufficient conditions for the existence of at least one solution by using Mawhin's continuation theorem. Examples are presented to illustrate the main results. (English)
Keyword: periodic boundary value problem
Keyword: impulsive differential equation
Keyword: fixed-point theorem
Keyword: growth condition
MSC: 34B10
MSC: 34B15
MSC: 34K10
MSC: 34K45
MSC: 47N20
idZBL: Zbl 1212.34184
idMR: MR2563123
DOI: 10.1007/s10492-009-0032-6
.
Date available: 2010-07-20T13:27:28Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140382
.
Reference: [1] Chen, J., Tisdell, C. C., Yuan, R.: On the solvability of periodic boundary value problems with impulse.J. Math. Anal. Appl. 331 (2007), 902-912. Zbl 1123.34022, MR 2313690, 10.1016/j.jmaa.2006.09.021
Reference: [2] Franco, D., Nieto, J. J.: A new maximum principle for impulsive first-order problems.Int. J. Theor. Phys. 37 (1998), 1607-1616. Zbl 0946.34024, MR 1627762, 10.1023/A:1026676105073
Reference: [3] Franco, D., Nieto, J. J.: First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions.Nonlinear Anal., Theory Methods Appl. 42 (2000), 163-173. Zbl 0966.34025, MR 1773975, 10.1016/S0362-546X(98)00337-X
Reference: [4] Franco, D., Nieto, J. J.: Maximum principles for periodic impulsive first order problems.J. Comput. Appl. Math. 88 (1998), 144-159. Zbl 0898.34010, MR 1609074, 10.1016/S0377-0427(97)00212-4
Reference: [5] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Math., Vol. 568.Springer Berlin (1977). MR 0637067, 10.1007/BFb0089537
Reference: [6] He, Z., Yu, J.: Periodic boundary value problems for first order impulsive ordinary differential equations.J. Math. Anal. Appl. 272 (2002), 67-78. MR 1930704, 10.1016/S0022-247X(02)00133-6
Reference: [7] Hernández, E. M., Rabello, M., Henriquez, H. R.: Existence of solutions for impulsive partial neutral functional differential equations.J. Math. Anal. Appl. 331 (2007), 1135-1158. Zbl 1123.34062, MR 2313705, 10.1016/j.jmaa.2006.09.043
Reference: [8] Jiang, D., Nieto, J. J., Zuo, W.: On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations.J. Math. Anal. Appl. 289 (2004), 691-699. Zbl 1134.34322, MR 2026934, 10.1016/j.jmaa.2003.09.020
Reference: [9] Li, X., Lin, X., Jiang, D., Zhang, X.: Existence and multiplicity of positive periodic solutions to functional differential equations with impulse effects.Nonlinear Anal., Theory Methods Appl. 62 (2005), 683-701. Zbl 1084.34071, MR 2149910, 10.1016/j.na.2005.04.005
Reference: [10] Li, J., Shen, J.: Periodic boundary value problems for delay differential equations with impulses.J. Comput. Appl. Math. 193 (2006), 563-573. Zbl 1101.34050, MR 2229561, 10.1016/j.cam.2005.05.037
Reference: [11] Liang, R., Shen, J.: Periodic boundary value problem for the first order impulsive functional differential equations.J. Comput. Appl. Math. 202 (2007), 498-510. Zbl 1123.34050, MR 2319972, 10.1016/j.cam.2006.03.017
Reference: [12] Liu, Y.: Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations.J. Math. Anal. Appl. 327 (2007), 435-452. Zbl 1119.34062, MR 2277424, 10.1016/j.jmaa.2006.01.027
Reference: [13] Liu, X.: Nonlinear boundary value problems for first order impulsive integro-differential equations.Appl. Anal. 36 (1990), 119-130. Zbl 0671.34018, MR 1040882, 10.1080/00036819008839925
Reference: [14] Liu, Y., Bai, Z., Gui, Z., Ge, W.: Positive periodic solutions of impulsive delay differential equations with sign-changing coefficients.Port. Math. (N.S.) 61 (2004), 177-191. MR 2066673
Reference: [15] Liu, Y., Ge, W.: Stability theorems and existence results for periodic solutions of nonlinear impulsive delay differential equations with variable coefficients.Nonlinear Anal., Theory Methods Appl. 57A (2004), 363-399. Zbl 1064.34051, MR 2064097
Reference: [16] Nieto, J. J.: Basic theory for nonresonance impulsive periodic problems of first order.J. Math. Anal. Appl. 205 (1997), 423-433. Zbl 0870.34009, MR 1428357, 10.1006/jmaa.1997.5207
Reference: [17] Nieto, J. J.: Impulsive resonance periodic problems of first order.Appl. Math. Lett. 15 (2002), 489-493. Zbl 1022.34025, MR 1902284, 10.1016/S0893-9659(01)00163-X
Reference: [18] Nieto, J. J.: Periodic boundary value problems for first-order impulsive ordinary differential equations.Nonlinear Anal., Theory Methods Appl. 51 (2002), 1223-1232. Zbl 1015.34010, MR 1926625, 10.1016/S0362-546X(01)00889-6
Reference: [19] Nieto, J. J., Rodríguez-López, R.: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations.J. Math. Anal. Appl. 318 (2006), 593-610. Zbl 1101.34051, MR 2215172, 10.1016/j.jmaa.2005.06.014
Reference: [20] Pierson-Gorez, C.: Impulsive differential equations of first order with periodic boundary conditions.Differ. Equ. Dyn. Syst. 1 (1993), 185-196. Zbl 0868.34007, MR 1258896
Reference: [21] Tang, S., Chen, L.: Global attractivity in a ``food-limited'' population model with impulsive effects.J. Math. Anal. Appl. 292 (2004), 211-221. Zbl 1062.34055, MR 2050225, 10.1016/j.jmaa.2003.11.061
Reference: [22] Vatsala, A. S., Sun, Y.: Periodic boundary value problems of impulsive differential equations.Appl. Anal. 44 (1992), 145-158. Zbl 0753.34008, MR 1284994, 10.1080/00036819208840074
Reference: [23] Yang, X., Shen, J.: Nonlinear boundary value problems for first order impulsive functional differential equations.Appl. Math. Comput. 189 (2007), 1943-1952. Zbl 1125.65074, MR 2332147, 10.1016/j.amc.2006.12.085
.

Files

Files Size Format View
AplMat_54-2009-6_3.pdf 309.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo