Title:
|
An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability (English) |
Author:
|
Myers, Timothy |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
3 |
Year:
|
2010 |
Pages:
|
621-633 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is commonly known that absolute gauge integrability, or Henstock-Kurzweil (H-K) integrability implies Lebesgue integrability. In this article, we are going to present another proof of that fact which utilizes the basic definitions and properties of the Lebesgue and H-K integrals. (English) |
Keyword:
|
absolute integrability |
Keyword:
|
gauge Integral |
Keyword:
|
H-K integral |
Keyword:
|
Lebesgue integral |
MSC:
|
26A39 |
MSC:
|
26A42 |
idZBL:
|
Zbl 1224.26027 |
idMR:
|
MR2672405 |
. |
Date available:
|
2010-07-20T17:04:16Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140594 |
. |
Reference:
|
[1] Bartle, R.: Return to the Riemann integral.Am. Math. Mon. 103 (1996), 625-632 . Zbl 0884.26007, MR 1413583, 10.2307/2974874 |
Reference:
|
[2] Bugajewska, D.: On the equation of $n$th order and the Denjoy integral.Nonlinear Anal. 34 (1998), 1111-1115. Zbl 0948.34003, MR 1637221 |
Reference:
|
[3] Bugajewska, D., Bugajewski, D.: On nonlinear integral equations and nonabsolute convergent integrals.Dyn. Syst. Appl. 14 (2005), 135-148 . Zbl 1077.45004, MR 2128317 |
Reference:
|
[4] Bugajewski, D., Szufla, S.: On the Aronszajn property for differential equations and the Denjoy integral.Ann. Soc. Math. 35 (1995), 61-69 . Zbl 0854.34005, MR 1384852 |
Reference:
|
[5] Chew, T., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals.Differ. Integral Equ. 4 (1991), 861-868 . Zbl 0733.34004, MR 1108065 |
Reference:
|
[6] Henstock, R.: Definitions of Riemann type of the variational integral.Proc. Lond. Math. Soc. 11 (1961), 404-418. MR 0132147 |
Reference:
|
[7] Henstock, R.: The General Theory of Integration.Oxford Math. Monogr., Clarendon Press, Oxford (1991) . Zbl 0745.26006, MR 1134656 |
Reference:
|
[8] Kurzweil, J.: Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter.Czech. Math. J. 7 (1957), 418-449 . Zbl 0090.30002, MR 0111875 |
Reference:
|
[9] McLeod, R.: The Generalized Riemann Integral.Carus Math. Monogr., no. 20, Mathematical Association of America, Washington (1980) . Zbl 0486.26005, MR 0588510 |
Reference:
|
[10] Munkres, J.: Analysis on Manifolds.Addison-Wesley Publishing Company, Redwood City, CA (1991) . Zbl 0743.26006, MR 1079066 |
Reference:
|
[11] Pfeffer, W.: The divergence theorem.Trans. Am. Math. Soc. 295 (1986), 665-685 . Zbl 0596.26007, MR 0833702 |
Reference:
|
[12] Pfeffer, W.: The multidimensional fundamental theorem of calculus.J. Austral. Math. Soc. (Ser. A) 43 (1987), 143-170 . Zbl 0638.26011, MR 0896622 |
Reference:
|
[13] Rudin, W.: Principles of Mathematical Analysis.Third Ed., McGraw-Hill, New York (1976) . Zbl 0346.26002, MR 0385023 |
Reference:
|
[14] Rudin, W.: Real and Complex Analysis.McGraw-Hill, New York (1987). Zbl 0925.00005, MR 0924157 |
Reference:
|
[15] Schwabik, Š.: The Perron integral in ordinary differential equations.Differ. Integral Equ. 6 (1993), 863-882 . Zbl 0784.34006, MR 1222306 |
Reference:
|
[16] Spivak, M.: Calculus on Manifolds.W. A. Benjamin, Menlo Park, CA (1965). Zbl 0141.05403, MR 0209411 |
Reference:
|
[17] Stromberg, K.: An Introduction to Classical Real Analysis.Waldworth, Inc (1981). Zbl 0454.26001, MR 0604364 |
. |