Previous |  Up |  Next

Article

Title: A characterization of commutative basic algebras (English)
Author: Chajda, Ivan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 2
Year: 2009
Pages: 113-120
Summary lang: English
.
Category: math
.
Summary: A basic algebra is an algebra of the same type as an MV-algebra and it is in a one-to-one correspondence to a bounded lattice having antitone involutions on its principal filters. We present a simple criterion for checking whether a basic algebra is commutative or even an MV-algebra. (English)
Keyword: lattice with section antitone involution
Keyword: basic algebra
Keyword: commutative basic algebra
Keyword: MV-algebra
MSC: 03G10
MSC: 06D35
MSC: 06F35
idZBL: Zbl 1212.06026
idMR: MR2535140
DOI: 10.21136/MB.2009.140646
.
Date available: 2010-07-20T17:51:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140646
.
Reference: [1] Botur, M., Halaš, R.: Finite commutative basic algebras are MV-algebras.(to appear) in Multiple-Valued Logic and Soft Computing.
Reference: [2] Chajda, I.: Lattices and semilattices having an antitone involution in every upper interval.Comment. Math. Univ. Carol. 44 (2003), 577-585. Zbl 1101.06003, MR 2062874
Reference: [3] Chajda, I., Emanovský, P.: Bounded lattices with antitone involutions and properties of MV-algebras.Discuss. Math., Gener. Algebra Appl. 24 (2004), 31-42. Zbl 1082.03055, MR 2117673, 10.7151/dmgaa.1073
Reference: [4] Chajda, I., Halaš, R.: A basic algebra is an MV-algebra if and only if it is a BCC-algebra.Int. J. Theor. Phys. 47 (2008), 261-267. Zbl 1145.06003, MR 2377053, 10.1007/s10773-007-9468-1
Reference: [5] Chajda, I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions.Acta Sci. Math. (Szeged) 71 (2005), 19-33. Zbl 1099.06006, MR 2160352
Reference: [6] Cignoli, R. L. O., D'Ottaviano, M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht (2000). Zbl 0937.06009, MR 1786097
.

Files

Files Size Format View
MathBohem_134-2009-2_1.pdf 219.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo