Previous |  Up |  Next

Article

Title: On Riesz homomorphisms in unital $f$-algebras (English)
Author: Chil, Elmiloud
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 2
Year: 2009
Pages: 121-131
Summary lang: English
.
Category: math
.
Summary: The main topic of the first section of this paper is the following theorem: let $A$ be an Archimedean $f$-algebra with unit element $e$, and $T\: A\rightarrow A$ a Riesz homomorphism such that $T^2(f)=T(fT(e))$ for all $f\in A$. Then every Riesz homomorphism extension $\widetilde T$ of $T$ from the Dedekind completion $A^{\delta }$ of $A$ into itself satisfies $\widetilde T^2(f)=\widetilde T(fT(e))$ for all $f\in A^{\delta }$. In the second section this result is applied in several directions.\ As a first application it is applied to show a result about extensions of positive projections to the Dedekind completion. A second application of the above result is a new approach to the Dedekind completion of commutative $d$-algebras. (English)
Keyword: vector lattice
Keyword: $d$-algebra
Keyword: $f$-algebra
MSC: 06F25
MSC: 46A40
idZBL: Zbl 1212.06043
idMR: MR2535141
DOI: 10.21136/MB.2009.140648
.
Date available: 2010-07-20T17:53:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140648
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Academic Press, Orlando (1985). Zbl 0608.47039, MR 0809372
Reference: [2] Bernau, S. J., Huijsmans, C. B.: Almost $f$-algebras and $d$-algebras.Math. Proc. Camb. Philos. Soc. 107 (1990), 208-308. Zbl 0707.06009, MR 1027782, 10.1017/S0305004100068560
Reference: [3] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés.Lect. Notes Math., 608, Springer (1977). Zbl 0384.06022, MR 0552653
Reference: [4] Birkhoff, G.: Lattice Theory.Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc., Providence, R.I. (1967). Zbl 0153.02501, MR 0227053
Reference: [5] Birkhoff, G., Pierce, R. S.: Lattice-ordered rings.Anais. Acad. Brasil. Cienc. 28 (1956), 41-69. Zbl 0070.26602, MR 0080099
Reference: [6] Boulabiar, K., Chil, E.: On the structure of Archimedean almost $f$-algebras.Demonstr. Math. 34 (2001), 749-760. MR 1869777
Reference: [7] Buskes, G., van Rooij, A.: Almost $f$-algebras: Structure and the Dedekind completion.Positivity 4 (2000), 233-243. Zbl 0967.46008, MR 1797126, 10.1023/A:1009874426887
Reference: [8] Hager, A. W., Robertson, L. C.: Representing and ringifying a Riesz space.Symposia Math. 21 (1977), 411-431. Zbl 0382.06018, MR 0482728
Reference: [9] Huijsmans, C. B., de Pagter, B.: Averaging operators and positive contractive projections.J. Math. Anal. Appl. 113 (1986), 163-184. Zbl 0604.47024, MR 0826666, 10.1016/0022-247X(86)90340-9
Reference: [10] Huijsmans, C. B.: Lattice-ordered algebras and $f$-algebras: A survey. Positive operators, Riesz Spaces and Economics.Stud. Econ. Theory 2 (1991), 151-169. MR 1307423, 10.1007/978-3-642-58199-1_7
Reference: [11] Huijsmans, C. B., de Pagte, B.: Subalgebras and Riesz subspaces of an $f$-algebra.Proc. London, Math. Soc., III. Ser. 48 (1984), 161-174. MR 0721777, 10.1112/plms/s3-48.1.161
Reference: [12] Luxembourg, W. A. J., Zaanen, A. C.: Riesz spaces I.North-Holland, Amsterdam (1971).
Reference: [13] de Pagter, G.: The space of extended orthomorphisms in a Riesz space.Pacific J. Math. 112 (1984), 193-210. Zbl 0541.46006, MR 0739146, 10.2140/pjm.1984.112.193
Reference: [14] Triki, A.: Extensions of positive projections and averaging operators.J. Math. Anal. Appl. 153 (1990), 486-496. Zbl 0727.47021, MR 1080661, 10.1016/0022-247X(90)90227-7
Reference: [15] Zaanen, A. C.: Riesz Space II.North-Holland, Amsterdam (1983). MR 0704021
.

Files

Files Size Format View
MathBohem_134-2009-2_2.pdf 242.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo