Previous |  Up |  Next

Article

Title: Rejection of nonharmonic disturbances in nonlinear systems (English)
Author: Liu, Shutang
Author: Jiang, Yuan
Author: Liu, Ping
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 5
Year: 2010
Pages: 785-798
Summary lang: English
.
Category: math
.
Summary: This paper proposes an asymptotic rejection algorithm on the rejection of nonharmonic periodic disturbances for general nonlinear systems. The disturbances, which are produced by nonlinear exosystems, are nonharmonic and periodic. A new nonlinear internal model is proposed to deal with the disturbances. Further, a state feedback controller is designed to ensure that the system's state variables can asymptotically converge to zero, and the disturbances can be completely rejected. The proposed algorithm can be used in many applications, e. g. active vibration control, and the avoidance of nonharmonic distortion in nonlinear circuits. An example is shown that the proposed algorithm can completely reject the nonharmonic periodic disturbances generated from a Van der Pol circuit. (English)
Keyword: disturbance rejection
Keyword: nonharmonic periodic disturbances
Keyword: global stability
Keyword: Van der Pol circuit
Keyword: vibration control
MSC: 62A10
MSC: 62F15
MSC: 93E12
idZBL: MR2778927
idMR: MR2778927
.
Date available: 2010-12-20T14:38:31Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141392
.
Reference: [1] Arcak, M., Kokotovic, P.: Nonlinear observers: A circle criteria design and robustness analysis.Automatica 37 (2001), 1923–1930. MR 2110678, 10.1016/S0005-1098(01)00160-1
Reference: [2] Benedetto, M. D. Di: Synthesis of an internal model for nonlinear output regulation.Internat. J. Control 45 (1987), 1023–1034. MR 0880281, 10.1080/00207178708933784
Reference: [3] Bodson, M., Douglas, S. C.: Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequencies.Automatica 33 (1997), 2213–2221. MR 1604113, 10.1016/S0005-1098(97)00149-0
Reference: [4] Byrnes, C. I., Isidori, A.: Nonlinear internal model for output regulation.IEEE Trans. Automat. Control 49 (2004), 2244–2247. MR 2106753, 10.1109/TAC.2004.838492
Reference: [5] Chen, C., Ding, Z., Lennox, B.: Rejection of nonharmonic disturbances in nonlinear systems with semi-global stability.IEEE Trans. Circuits. Syst. II: Expr. Briefs 55 (2008), 1289–1293. 10.1109/TCSII.2008.2009962
Reference: [6] Chen, Z., Huang, J.: Robust output regulation with nonlinear exosystems.Automatica 41 (2005), 1447–1454. Zbl 1086.93013, MR 2160490, 10.1016/j.automatica.2005.03.015
Reference: [7] Davison, E. J.: The robust control of a servomechanism problem for linear time-invariant multivariable systems.IEEE Trans. Automat. Control 21 (1976), 25–34. Zbl 0326.93007, MR 0406616, 10.1109/TAC.1976.1101137
Reference: [8] Desoer, C. A., Lin, C. A.: Tracking and disturbance rejection of MIMO nonlinear systems with PI controller.IEEE Trans. Automat. Control 30 (1985), 861–867. Zbl 0573.93027, MR 0799479, 10.1109/TAC.1985.1104078
Reference: [9] Ding, Z.: Global output regulation of uncertain nonlinear systems with exogenous signals.Automatica 37 (2001),113–119. Zbl 0964.93057, MR 1832885
Reference: [10] Ding, Z.: Output regulation of uncertain nonlinear systems with nonlinear exosystems.IEEE Trans. Automat. Control 51 (2006), 498–503. MR 2205690, 10.1109/TAC.2005.864199
Reference: [11] Ding, Z.: Asymptotic rejection of unknown sinusoidal disturbances in nonlinear systems.Automatica 43 (2007), 174–177. MR 2266785, 10.1016/j.automatica.2006.08.006
Reference: [12] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay.Kybernetika 45 (2009), 33–48. Zbl 1158.93303, MR 2489579
Reference: [13] Feng, G., Zhang, T.: Output regulation of discrete-time piecewise-liner systems with application to controlling chaos.IEEE Trans. Circuits. Syst. II: Expr. Briefs 53 (2006), 249–253. 10.1109/TCSII.2005.862178
Reference: [14] Francis, D. A., Wonham, W. M.: The internal model principle for linear multivariable regulators.Appl. Math. Optim. 2 (1975), 170–194. Zbl 0351.93015, MR 0389331, 10.1007/BF01447855
Reference: [15] Hu, T., Teel, A. R.: Characterization of forced vibration for difference inclusions: A Lyapunov approach.IEEE Trans. Circuits. Syst. I: Reg. Paper 54 (2007), 1367–1379. MR 2370594, 10.1109/TCSI.2007.895530
Reference: [16] Huang, J.: Asymptotic tracking and disturbance rejection in uncertain nonlinear systems.IEEE Trans. Automat. Control 40 (1995), 1118–1122. Zbl 0829.93027, MR 1345975, 10.1109/9.388697
Reference: [17] Huang, J.: Nonlinear Output Regulation: Theroy and Application.SIAM, Philadelphia 2004. MR 2308004
Reference: [18] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem.IEEE Trans. Automat. Control 49 (2004), 2203–2218. MR 2106750, 10.1109/TAC.2004.839236
Reference: [19] Huang, J., Lin, C-F.: On a robust nonlinear servomechanism problem.IEEE Trans. Automat. Control 39 (1994), 1510–1513. Zbl 0800.93290, MR 1283933, 10.1109/9.299646
Reference: [20] Huang, J., Rugh, W. J.: On a nonlinear multivariable servomechanism problem.Automatica 26 (1990), 963–972. Zbl 0717.93019, MR 1080983, 10.1016/0005-1098(90)90081-R
Reference: [21] Isidori, A.: Nonlinear Control Systems.Third edition. Springer, Berlin 1995. Zbl 0878.93001, MR 1410988
Reference: [22] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems.IEEE Trans. Automat. Control 35 (1990), 131–140. Zbl 0704.93034, MR 1038409, 10.1109/9.45168
Reference: [23] Jiang, Y., Liu, S.: Rejection of nonharmonic disturbances in a class of nonlinear systems with nonlinear exosystems.Asian J. Control. Submitted for publication.
Reference: [24] Johnson, C. D.: Accommodation of external disturbances in linear regulator and servomechanism problems.IEEE Trans. Automat. Control 16 (1971), 635–644. 10.1109/TAC.1971.1099830
Reference: [25] Khalil, H. K.: Nonlinear Systems.Third edition. Prentice-Hall, NJ 2002. Zbl 1003.34002
Reference: [26] Liu, L., Chen, Z., Huang, J.: Parameter convergence and minimal internal model with an adaptive output regulation problem.Automatica 45 (2009), 1206–1311. Zbl 1162.93363, MR 2531610
Reference: [27] Marino, R., Santosuosso, G. L., Tomei, P.: Robust adaptive compensation of biased sinusoidal disturbances with unknown frequencies.Automatica 39 (2003), 1755–1761. MR 2142091, 10.1016/S0005-1098(03)00170-5
Reference: [28] Priscoli, F. D.: Output regulation with nonlinear internal models.Systems Control Lett. 53 (2004), 177–185. Zbl 1157.93412, MR 2092508, 10.1016/j.sysconle.2004.04.003
Reference: [29] Ramos, L. E., C̆elikovský, S., Kuc̆era, V.: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem.IEEE Trans. Automat. Control 49 (2004), 1737–1742. MR 2091325, 10.1109/TAC.2004.835404
Reference: [30] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem.Kybernetika 45 (2009), 427–444. Zbl 1165.93320, MR 2543132
Reference: [31] Serrani, A., Isidori, A.: Global robust output regulation for a class of nonlinear systems.Systems Control Lett. 39 (2000), 133–139. Zbl 0948.93027, MR 1826676, 10.1016/S0167-6911(99)00099-7
Reference: [32] Serrani, A., Isidori, A., Marconi, L.: Semiglobal nonlinear output regulation with adaptive internal model.IEEE Trans. Automat. Control 46 (2001), 1178–1194. Zbl 1057.93053, MR 1847323, 10.1109/9.940923
Reference: [33] Sun, W., Huang, J.: Output regulation for a class of uncertain nonlinear systems with nonlinear exosystems and its application.Science in China, Ser. F: Information Sciences. 52 (2009), 2172–2179. Zbl 1182.93072, MR 2566641
Reference: [34] Xi, Z., Ding, Z.: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems.Automatica 43 (2007), 143–149. Zbl 1140.93462, MR 2266780, 10.1016/j.automatica.2006.08.011
Reference: [35] Ye, X., Huang, J.: Decentralized adaptive output regulation for a class of large-scale nonlinear systems.IEEE Trans. Automat. Control 48 (2003), 276–281. MR 1957326, 10.1109/TAC.2002.808480
.

Files

Files Size Format View
Kybernetika_46-2010-5_1.pdf 316.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo