Previous |  Up |  Next

Article

Title: Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra (English)
Author: Zhang, Jiangfeng
Author: Moog, Claude H.
Author: Xia, Xiaohua
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 5
Year: 2010
Pages: 799-830
Summary lang: English
.
Category: math
.
Summary: In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper. (English)
Keyword: realization
Keyword: nonlinear system
Keyword: differential ideal
Keyword: differential form
MSC: 93B15
MSC: 93C10
idZBL: Zbl 1205.93030
idMR: MR2778926
.
Date available: 2010-12-20T15:07:54Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141394
.
Reference: [1] Aranda-Bricaire, E., Moog, C. H., Pomet, J.-B.: A linear algebraic framework for dynamic feedback linearization.IEEE Trans. Automat. Control 40 (1995), 127–132. MR 1344331, 10.1109/9.362886
Reference: [2] Bartosiewicz, Z.: A new setting for polynomial continuous-time systems, and a realization theorem.IMA J. Math. Control Inform. Theory 2 (1985), 71–80. Zbl 0637.93013, 10.1093/imamci/2.1.71
Reference: [3] Callier, F. M., Desoer, C. A.: Linear System Theory.Springer, New York 1991. Zbl 0744.93002, MR 1123479
Reference: [4] Celle, F., Gauthier, J. P.: Realizations of nonlinear analytic input-output maps.Math. Systems Theory 19 (1987), 227–237. Zbl 0638.93016, MR 0871786, 10.1007/BF01704915
Reference: [5] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, Part I: Basics.Elsevier Science Publishers, Amsterdam 1981. MR 0685274
Reference: [6] Conte, G., Moog, C. H., Perdon, A. M.: Nonlinear Control Systems.Lecture Notes in Control and Inform. Sci. 242, Springer, New York 1990.
Reference: [7] Conte, G., Perdon, A. M., Moog, C. H.: The differential field associated to a general analytic nonlinear dynamical system.IEEE Trans. Automat. Control 38 (1993), 1120–1124. Zbl 0800.93539, MR 1235235, 10.1109/9.231468
Reference: [8] Cox, D. A., Little, J. B., O’Shea, D.: Ideals, varieties, and algorithms.Second edition. Springer, New York 1996.
Reference: [9] Crouch, P. E., Lamnabhi-Lagarrigue, F.: State space realizations of nonlinear systems defined by input output differential equations.In: Analysis and Optimization Systems (A. Bensousan and J. L. Lions, eds.), Lecture Notes in Control and Inform. Sci. 111, 138–149. Zbl 0675.93031, MR 0956266
Reference: [10] Crouch, P. E., Lamnabhi-Lagarrigue, F.: Realizations of input output differential equations.In: Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing II Proceeding MTNS-91, Mita Press 1992. MR 1198030
Reference: [11] Crouch, P. E., Lamnabhi-Lagarrigue, F., Pinchon, D.: A realization algorithm for input output systems.Internat. J. Control 62 (1995), 941–960. MR 1632926, 10.1080/00207179508921576
Reference: [12] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems.J. Math. Systems Estim. Control 5 (1995), 1–27. Zbl 0852.93016, MR 1651823
Reference: [13] Benedetto, M. C. Di, Grizzle, J., Moog, C. H.: Rank invariants of nonlinear systems.SIAM J. Control Optim. 27 (1989), 658–672. Zbl 0696.93033, MR 0993292, 10.1137/0327035
Reference: [14] Diop, S.: A state elimination procedure for nonlinear systems.In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori,D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 190–198. Zbl 0696.93016, MR 1229776
Reference: [15] Diop, S., Fliess, F.: Nonlinear observability, identification, and persistent trajectories.In: Proc. 30th CDC, Brighton 1991.
Reference: [16] Fliess, M.: Realizations of nonlinear systems and abstract transitive Lie algebras.Bull. Amer. Math. Soc. (N. S.) 2 (1980), 444–446. Zbl 0427.93011, MR 0561529, 10.1090/S0273-0979-1980-14760-6
Reference: [17] Fliess, M.: Some remarks on nonlinear invertibility and dynamic state feedback.In: Theory and Applications of Nonlinear Control Systems, also in: Proc. MTNS’85, (C. Byrnes and A. Lindquist, eds.), North Holland, Amsterdam 1986. Zbl 0601.93028, MR 0935371
Reference: [18] Fliess, M.: A note on the invertibility of nonlinear input output systems.Syst. Control Lett. 8 (1986), 147–151. MR 0870352, 10.1016/0167-6911(86)90073-3
Reference: [19] Fliess, M.: Automatique et corps différentiels.Forum Math. 1 (1986), 227–238. MR 1005424
Reference: [20] Fliess, M.: Generalized controller canonical forms for linear and nonlinear dynamics.IEEE Trans. Autom. Control 35 (1990), 994–1001. Zbl 0724.93010, MR 1065035, 10.1109/9.58527
Reference: [21] Fliess, M., Kupka, I.: Finiteness conditions for nonlinear input output differential systems.SIAM J. Control Optim. 21 (1983), 721–728. MR 0710997, 10.1137/0321044
Reference: [22] Glad, S. T.: Nonlinear state space and input output descriptions using differential polynomials.In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori and D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 182–189. Zbl 0682.93030, MR 1229775
Reference: [23] Halas, M., Huba, M.: Symbolic computation for nonlinear systems using quotients over skew polynomial ring.In: 14th Mediterranean Conference on Control and Automation, Ancona 2006.
Reference: [24] Halas, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems.Automatica 44 (2008), 1181–1190. MR 2531783, 10.1016/j.automatica.2007.09.008
Reference: [25] Hartshorne, R.: Algebraic Geometry.Springer, New York 1977. Zbl 0367.14001, MR 0463157
Reference: [26] Hermann, R., Krener, A. J.: Nonlinear controllability and observability.IEEE Trans. Automat. Control 22 (1977), 728–740. Zbl 0396.93015, MR 0476017, 10.1109/TAC.1977.1101601
Reference: [27] Isidori, A.: Nonlinear Control Systems.Third edition. Springer, New York 1995. Zbl 0878.93001, MR 1410988
Reference: [28] Isidori, A., D’Alessandro, P., Ruberti, A.: Realization and structure theory of bilinear dynamical systems.SIAM J. Control 13 (1974), 517–535. MR 0424307
Reference: [29] Jacobson, N.: Basic Algebra I.W. H. Freeman and Company, San Francisco 1974. Zbl 0284.16001, MR 0356989
Reference: [30] Jakubczyk, B.: Existence and uniqueness of realizations of nonlinear systems.SIAM J. Control Optim. 18 (1980), 455–471. Zbl 0447.93012, MR 0579553, 10.1137/0318034
Reference: [31] Jakubczyk, B.: Construction of formal and analytic realizations of nonlinear systems.In: Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Inform. Sci. 39, Springer 1982. Zbl 0519.93022, MR 0837456
Reference: [32] Jakubczyk, B.: Realization theory for nonlinear systems, three approaches.In: Alg. & Geom. Methods in Nonlin. Control. Theory. Springer 1986. Zbl 0608.93018, MR 0862316
Reference: [33] Kaplansky, I.: An Introduction to Differential Algebra.Hermann, Paris 1957. Zbl 0083.03301, MR 0093654
Reference: [34] Kolchin, E. R.: Differential Algebra and Algebraic Groups.Academic Press, New York 1973. Zbl 0264.12102, MR 0568864
Reference: [35] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.Volume I. John Willey & Sons, New York 1963. Zbl 0119.37502, MR 1393940
Reference: [36] Kotta, U., Kotta, P., Nomm, S., Tonso, M.: Irreducibility conditions for continuous-time multi-input multi-output nonlinear systems.In: Proc. 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006). Singapore 2006.
Reference: [37] Kotta, U., Zinober, A. S. I., Liu, P.: Transfer equivalence and realization of nonlinear higher order input output difference equations.Automatica 37 (2001), 1771–1778. Zbl 1009.93048, 10.1016/S0005-1098(01)00144-3
Reference: [38] Kou, S. R., Elliot, D. L., Tarn, T. J.: Observability of nonlinear systems.Inform. Control 22 (1973), 89–99. MR 0325192, 10.1016/S0019-9958(73)90508-1
Reference: [39] Krener, A. J., Respondek, W.: Nonlinear observers with linearizable error dynamics.SIAM J. Control Optim. 23 (1985), 197–216. Zbl 0569.93035, MR 0777456
Reference: [40] Moog, C. H., Zheng, Y. F., Liu, P.: Input-output equivalence of nonlinear systems and their realizations.In: 15th IFAC World Congress on Automatic Control, IFAC, Barcelona 2002.
Reference: [41] Nijmeijer, H., Schaft, A. van der: Nonlinear Dynamical Control Systems.Springer, New York 1990. MR 1047663
Reference: [42] Ore, O.: Linear equations in non-commutative fields.Ann. Math. 32 (1931), 463–477. Zbl 0001.26601, MR 1503010, 10.2307/1968245
Reference: [43] Ore, O.: Theory of non-commutative polynomials.Ann. Math. 34 (1933), 80–508. Zbl 0007.15101
Reference: [44] Ritt, J. F.: Differential Algebra.American Mathematical Society, Providence 1950. Zbl 0037.18402, MR 0035763
Reference: [45] Rudolph, J.: Viewing input-output system equivalence from differential algebra.J. Math. Systems Estim. Control 4 (1994), 353–383. Zbl 0806.93012, MR 1298841
Reference: [46] Schaft, A. J. van der: Observability and controllability for smooth nonlinear systems.SIAM J. Control Optim. 20 (1982), 338–354. MR 0652211, 10.1137/0320026
Reference: [47] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations.Math. Systems Theory 19 (1987), 239–275. MR 0871787, 10.1007/BF01704916
Reference: [48] Schaft, A. J. van der: Transformations of nonlinear systems under external equivalence.In: New Trends in Nonlinear Control Theory, Lecture Notes in Control and Information Sciences 122, Springer, New York 1989, pp. 33–43. MR 1229763
Reference: [49] Schaft, A. J. van der: Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs.Syst. Control Lett. 12 (1989), 151–160. MR 0985565, 10.1016/0167-6911(89)90008-X
Reference: [50] Sontag, E. D.: Bilinear realizability is equivalent to existence of a singular affine differential i/o equation.Syst. Control Lett. 11 (1988), 190–198. Zbl 0657.93010, MR 0960665, 10.1016/0167-6911(88)90057-6
Reference: [51] Sussmann, H. S.: Existence and uniqueness of minimal realizations of nonlinear systems.Math. Systems Theory 10 (1977), 263–284. MR 0437158, 10.1007/BF01683278
Reference: [52] Wang, Y., Sontag, E. D.: Algebraic differential equations and rational control systems.SIAM J. Control Optim. 30 (1992), 1126–1149. Zbl 0762.93015, MR 1178655, 10.1137/0330060
Reference: [53] Wang, Y., Sontag, E. D.: Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations.Forum Math. 4 (1992), 299–322. Zbl 0746.93020, MR 1164098, 10.1515/form.1992.4.299
Reference: [54] Wang, Y., Sontag, E. D.: Orders of input/output differential equations and state-space dimensions.SIAM J. Control Optim. 33 (1995), 1102–1126. Zbl 0830.93015, MR 1339057, 10.1137/S0363012993246828
Reference: [55] Xia, X., Márquez, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings.Automatica 38 (2002), 1549–1555. MR 2134034, 10.1016/S0005-1098(02)00051-1
Reference: [56] Zheng, Y., Cao, L.: Transfer function description for nonlinear systems.J. East China Normal University (Natural Science) 2 (1995), 5–26. MR 1370603
.

Files

Files Size Format View
Kybernetika_46-2010-5_2.pdf 487.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo