[2] Cattaneo, C.: 
Sulla Conduzione del Calore. Atti Semin. Mat. Fis., Univ. Modena 3 (1949), 83-101 Italian. 
MR 0032898 | 
Zbl 0035.26203 
[3] Hadeler, K P.: Random walk systems and reaction telegraph equations. In: Dynamical Systems and their Applications S. van Strien, S. V. Lunel Royal Academy of the Netherlands (1995).
[4] Haus, H. A.: Waves and Fields in Optoelectronics. Prentice Hall (1984).
[5] Kato, T.: 
Abstract Differential Equations and Nonlinear Mixed Problems. Fermian Lectures. Academie Nazionale dei Licei Pisa (1985). 
MR 0930267 
[7] Li, Ta-Tsien: 
Nonlinear Heat Conduction with Finite Speed of Popagation. Proceedings of the China-Japan Symposium on Reaction Diffusion Equations and their Applcations to Computational Aspects. World Scientific Singapore (1997). 
MR 1654353 
[8] Matsumura, A.: 
On the asymptotic behavior of solutions to semi-linear wave equations. Publ. Res. Inst. Mat. Sci., Kyoto Univ. 12 (1976), 169-189. 
DOI 10.2977/prims/1195190962 | 
MR 0420031 
[9] Matsumura, A.: 
Global existence and asymptotics of the solutions of second-order quasilinear hyperbolic equations with first-order dissipation. Publ. Res. Inst. Mat. Sci., Kyoto Univ. 13 (1977), 349-379. 
DOI 10.2977/prims/1195189813 | 
MR 0470507 
[11] Milani, A.: 
Global existence via singular perturbations for quasilinear evolution equations. Adv. Math. Sci. Appl. 6 (1996), 419-444. 
MR 1411976 | 
Zbl 0868.35008 
[12] Mizohata, S.: 
The Theory of Partial Differential Equations. Cambridge University Press London (1973). 
MR 0599580 | 
Zbl 0263.35001 
[13] Moser, J.: 
A rapidly convergent iteration method and non-linear differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 265-315. 
MR 0199523 | 
Zbl 0174.47801 
[16] Racke, R.: 
Lectures on Nonlinear Evolution Equations. Initial Value Problems. Vieweg Braunschweig (1992). 
MR 1158463 | 
Zbl 0811.35002