Previous |  Up |  Next

Article

Title: Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations (English)
Author: Milani, Albert
Author: Volkmer, Hans
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 5
Year: 2011
Pages: 425-457
Summary lang: English
.
Category: math
.
Summary: We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation $$ u_{tt} + 2 u_t - a_{ij}(u_t,\nabla u)\partial _i\partial _j u = f $$ corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation $$ -a_{ij}(0,\nabla v)\partial _i\partial _j v=h. $$ We then give conditions for the convergence, as $t\to \infty $, of the solution of the evolution equation to its stationary state. (English)
Keyword: quasilinear evolution equation
Keyword: quasilinear elliptic equation
Keyword: a priori estimates
Keyword: global existence
Keyword: asymptotic behavior
Keyword: stationary solutions
MSC: 35A01
MSC: 35B35
MSC: 35B40
MSC: 35J15
MSC: 35J60
MSC: 35L15
MSC: 35L70
idZBL: Zbl 1249.35072
idMR: MR2852065
DOI: 10.1007/s10492-011-0025-0
.
Date available: 2011-09-22T14:17:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141617
.
Reference: [1] Adams, R., Fournier, J.: Sobolev Spaces, 2nd ed.Academic Press New York (2003). Zbl 1098.46001, MR 2424078
Reference: [2] Cattaneo, C.: Sulla Conduzione del Calore.Atti Semin. Mat. Fis., Univ. Modena 3 (1949), 83-101 Italian. Zbl 0035.26203, MR 0032898
Reference: [3] Hadeler, K P.: Random walk systems and reaction telegraph equations.In: Dynamical Systems and their Applications S. van Strien, S. V. Lunel Royal Academy of the Netherlands (1995).
Reference: [4] Haus, H. A.: Waves and Fields in Optoelectronics.Prentice Hall (1984).
Reference: [5] Kato, T.: Abstract Differential Equations and Nonlinear Mixed Problems. Fermian Lectures.Academie Nazionale dei Licei Pisa (1985). MR 0930267
Reference: [6] Klainerman, S.: Global existence for nonlinear wave equations.Commun. Pure Appl. Math. 33 (1980), 43-101. Zbl 0405.35056, MR 0544044, 10.1002/cpa.3160330104
Reference: [7] Li, Ta-Tsien: Nonlinear Heat Conduction with Finite Speed of Popagation. Proceedings of the China-Japan Symposium on Reaction Diffusion Equations and their Applcations to Computational Aspects.World Scientific Singapore (1997). MR 1654353
Reference: [8] Matsumura, A.: On the asymptotic behavior of solutions to semi-linear wave equations.Publ. Res. Inst. Mat. Sci., Kyoto Univ. 12 (1976), 169-189. MR 0420031, 10.2977/prims/1195190962
Reference: [9] Matsumura, A.: Global existence and asymptotics of the solutions of second-order quasilinear hyperbolic equations with first-order dissipation.Publ. Res. Inst. Mat. Sci., Kyoto Univ. 13 (1977), 349-379. MR 0470507, 10.2977/prims/1195189813
Reference: [10] Milani, A.: The quasi-stationary Maxwell equations as singular limit of the complete equations: The quasi-linear case.J. Math. Anal. Appl. 102 (1984), 251-274. Zbl 0551.35006, MR 0751358, 10.1016/0022-247X(84)90218-X
Reference: [11] Milani, A.: Global existence via singular perturbations for quasilinear evolution equations.Adv. Math. Sci. Appl. 6 (1996), 419-444. Zbl 0868.35008, MR 1411976
Reference: [12] Mizohata, S.: The Theory of Partial Differential Equations.Cambridge University Press London (1973). Zbl 0263.35001, MR 0599580
Reference: [13] Moser, J.: A rapidly convergent iteration method and non-linear differential equations.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 265-315. Zbl 0174.47801, MR 0199523
Reference: [14] Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations.Nonlin. Anal., Theory Methods Appl. 9 (1985), 399-418. Zbl 0576.35023, MR 0785713, 10.1016/0362-546X(85)90001-X
Reference: [15] Racke, R.: Non-homogeneous nonlinear damped wave equations in unbounded domains.Math. Methods Appl. Sci. 13 (1990), 481-491. Zbl 0728.35071, 10.1002/mma.1670130604
Reference: [16] Racke, R.: Lectures on Nonlinear Evolution Equations. Initial Value Problems.Vieweg Braunschweig (1992). Zbl 0811.35002, MR 1158463
Reference: [17] Schochet, S.: The instant-response limit in Whitham's nonlinear traffic flow model: Uniform well-posedness and global existence.Asymptotic Anal. 1 (1988), 263-282. Zbl 0685.35099, MR 0972301, 10.3233/ASY-1988-1401
Reference: [18] Yang, H., Milani, A.: On the diffusion phenomenon of quasilinear hyperbolic waves.Bull. Sci. Math. 124 (2000), 415-433. Zbl 0959.35126, MR 1781556, 10.1016/S0007-4497(00)00141-X
.

Files

Files Size Format View
AplMat_56-2011-5_1.pdf 384.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo