Previous |  Up |  Next

Article

Title: On the worst scenario method: Application to a quasilinear elliptic 2D-problem with uncertain coefficients (English)
Author: Harasim, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 5
Year: 2011
Pages: 459-480
Summary lang: English
.
Category: math
.
Summary: We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the one-dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. Furthermore, it is shown that the Galerkin approximation of the state solution can be calculated by means of the Kachanov method as the limit of a sequence of solutions to linearized problems. (English)
Keyword: worst scenario problem
Keyword: nonlinear differential equation
Keyword: uncertain input parameters
Keyword: Galerkin approximation
Keyword: Kachanov method
MSC: 35D30
MSC: 35G30
MSC: 35J62
MSC: 47H05
MSC: 47J05
MSC: 49M25
MSC: 49N45
MSC: 65J15
MSC: 65N30
idZBL: Zbl 1249.35043
idMR: MR2852066
DOI: 10.1007/s10492-011-0026-z
.
Date available: 2011-09-22T14:18:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141619
.
Reference: [1] Chleboun, J.: Reliable solution for a 1D quasilinear elliptic equation with uncertain coefficients.J. Math. Anal. Appl. 234 (1999), 514-528. Zbl 0944.35027, MR 1689404, 10.1006/jmaa.1998.6364
Reference: [2] Chleboun, J.: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: Sensitivity analysis and numerical examples.Nonlinear Anal., Theory Methods Appl. 44 (2001), 375-388. Zbl 1002.35041, MR 1817101, 10.1016/S0362-546X(99)00274-6
Reference: [3] Ciarlet, P. G.: The Finite Element Methods for Elliptic Problems. Classics in Applied Mathematics.SIAM Philadelphia (2002). MR 1930132
Reference: [4] Franců, J.: Monotone operators. A survey directed to applications to differential equations.Apl. Mat. 35 (1990), 257-301. MR 1065003
Reference: [5] Harasim, P.: On the worst scenario method: a modified convergence theorem and its application to an uncertain differential equation.Appl. Math. 53 (2008), 583-598. Zbl 1199.47207, MR 2469067, 10.1007/s10492-008-0043-8
Reference: [6] Hlaváček, I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to uncertainty in coefficients.J. Math. Anal. Appl. 212 (1997), 452-466. MR 1464890, 10.1006/jmaa.1997.5518
Reference: [7] Hlaváček, I.: Reliable solution of elliptic boundary value problems with respect to uncertain data.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3879-3890. MR 1602891, 10.1016/S0362-546X(96)00236-2
Reference: [8] Hlaváček, I.: Uncertain input data problems and the worst scenario method.Appl. Math. 52 (2007), 187-196. Zbl 1164.93354, MR 2316152, 10.1007/s10492-007-0010-9
Reference: [9] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario method.Elsevier Amsterdam (2004). Zbl 1116.74003, MR 2285091
Reference: [10] Hlaváček, I., Křížek, M., Malý, J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168-189. MR 1275952, 10.1006/jmaa.1994.1192
Reference: [11] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). MR 1066462
Reference: [12] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.Birkhäuser Basel (2005). Zbl 1087.35002, MR 2176645
Reference: [13] Zeidler, E.: Applied Functional Analysis. Applications to Mathematical Physics.Springer Berlin (1995). Zbl 0834.46002, MR 1347691
Reference: [14] Zeidler, E.: Applied Functional Analysis. Main Principles and their Applications.Springer New York (1995). MR 1347692
.

Files

Files Size Format View
AplMat_56-2011-5_2.pdf 310.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo