Title:
|
On the worst scenario method: Application to a quasilinear elliptic 2D-problem with uncertain coefficients (English) |
Author:
|
Harasim, Petr |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
56 |
Issue:
|
5 |
Year:
|
2011 |
Pages:
|
459-480 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the one-dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. Furthermore, it is shown that the Galerkin approximation of the state solution can be calculated by means of the Kachanov method as the limit of a sequence of solutions to linearized problems. (English) |
Keyword:
|
worst scenario problem |
Keyword:
|
nonlinear differential equation |
Keyword:
|
uncertain input parameters |
Keyword:
|
Galerkin approximation |
Keyword:
|
Kachanov method |
MSC:
|
35D30 |
MSC:
|
35G30 |
MSC:
|
35J62 |
MSC:
|
47H05 |
MSC:
|
47J05 |
MSC:
|
49M25 |
MSC:
|
49N45 |
MSC:
|
65J15 |
MSC:
|
65N30 |
idZBL:
|
Zbl 1249.35043 |
idMR:
|
MR2852066 |
DOI:
|
10.1007/s10492-011-0026-z |
. |
Date available:
|
2011-09-22T14:18:22Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141619 |
. |
Reference:
|
[1] Chleboun, J.: Reliable solution for a 1D quasilinear elliptic equation with uncertain coefficients.J. Math. Anal. Appl. 234 (1999), 514-528. Zbl 0944.35027, MR 1689404, 10.1006/jmaa.1998.6364 |
Reference:
|
[2] Chleboun, J.: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: Sensitivity analysis and numerical examples.Nonlinear Anal., Theory Methods Appl. 44 (2001), 375-388. Zbl 1002.35041, MR 1817101, 10.1016/S0362-546X(99)00274-6 |
Reference:
|
[3] Ciarlet, P. G.: The Finite Element Methods for Elliptic Problems. Classics in Applied Mathematics.SIAM Philadelphia (2002). MR 1930132 |
Reference:
|
[4] Franců, J.: Monotone operators. A survey directed to applications to differential equations.Apl. Mat. 35 (1990), 257-301. MR 1065003 |
Reference:
|
[5] Harasim, P.: On the worst scenario method: a modified convergence theorem and its application to an uncertain differential equation.Appl. Math. 53 (2008), 583-598. Zbl 1199.47207, MR 2469067, 10.1007/s10492-008-0043-8 |
Reference:
|
[6] Hlaváček, I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to uncertainty in coefficients.J. Math. Anal. Appl. 212 (1997), 452-466. MR 1464890, 10.1006/jmaa.1997.5518 |
Reference:
|
[7] Hlaváček, I.: Reliable solution of elliptic boundary value problems with respect to uncertain data.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3879-3890. MR 1602891, 10.1016/S0362-546X(96)00236-2 |
Reference:
|
[8] Hlaváček, I.: Uncertain input data problems and the worst scenario method.Appl. Math. 52 (2007), 187-196. Zbl 1164.93354, MR 2316152, 10.1007/s10492-007-0010-9 |
Reference:
|
[9] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario method.Elsevier Amsterdam (2004). Zbl 1116.74003, MR 2285091 |
Reference:
|
[10] Hlaváček, I., Křížek, M., Malý, J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168-189. MR 1275952, 10.1006/jmaa.1994.1192 |
Reference:
|
[11] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). MR 1066462 |
Reference:
|
[12] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.Birkhäuser Basel (2005). Zbl 1087.35002, MR 2176645 |
Reference:
|
[13] Zeidler, E.: Applied Functional Analysis. Applications to Mathematical Physics.Springer Berlin (1995). Zbl 0834.46002, MR 1347691 |
Reference:
|
[14] Zeidler, E.: Applied Functional Analysis. Main Principles and their Applications.Springer New York (1995). MR 1347692 |
. |