Previous |  Up |  Next

Article

Title: H-closed extensions with countable remainder (English)
Author: McNeill, Daniel K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 123-137
Summary lang: English
.
Category: math
.
Summary: This paper investigates necessary and sufficient conditions for a space to have an H-closed extension with countable remainder. For countable spaces we are able to give two characterizations of those spaces admitting an H-closed extension with countable remainder. The general case is more difficult, however, we arrive at a necessary condition --- a generalization of Čech completeness, and several sufficient conditions for a space to have an H-closed extension with countable remainder. In particular, using the notation of Császár, we show that a space $X$ is a Čech $g$-space if and only if $X$ is $G_\delta$ in $\sigma X$ or equivalently if $EX$ is Čech complete. An example of a space which is a Čech $f$-space but not a Čech $g$-space is given answering a couple of questions of Császár. We show that if $X$ is a Čech $g$-space and $R(EX)$, the residue of $EX$, is Lindelöf, then $X$ has an H-closed extension with countable remainder. Finally, we investigate some natural generalizations of the residue to the class of all Hausdorff spaces. (English)
Keyword: Čech complete
Keyword: H-closed
Keyword: extension
MSC: 54A25
MSC: 54D35
MSC: 54D40
idZBL: Zbl 1249.54047
idMR: MR2880915
.
Date available: 2012-02-07T10:28:30Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141830
.
Reference: [1] Charalambous M.G.: Compactifications with countable remainder.Proc. Amer. Math. Soc. 78 (1980), no. 1, 127–131. Zbl 0439.54025, MR 0548099, 10.1090/S0002-9939-1980-0548099-3
Reference: [2] Császár K.: Generalized Čech-complete spaces.Ann. Univ. Sci. Budapest Eötvös Sect. Math. 25 (1982), 229–238. MR 0683962
Reference: [3] Dickman R.F., Jr., Porter J.R., Rubin L.R.: Completely regular absolutes and projective objects.Pacific J. Math. 94 (1981), 277–295. Zbl 0426.54005, MR 0628580, 10.2140/pjm.1981.94.277
Reference: [4] Engelking R.: General Topology.Polish Scientific Publishers, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [5] Frolík Z.: Generalization of the $G_{\delta }$-property of complete metric spaces.Czechoslovak Math. J. 10 (1960), 359–379. MR 0116305
Reference: [6] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand Reinhold, New York, 1960. Zbl 0327.46040, MR 0116199
Reference: [7] Henriksen M.: Tychonoff spaces that have a compactification with a countable remainder.General Topology and its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos. Prague, 1976), Part B, Soc. Czech. Mathematicians and Physicists, Prague, 1977, pp. 164–167. MR 0454922
Reference: [8] Hoshina T.: Compactifications by adding a countable number of points.General Topology and its Relations to Modern Analysis and Algebra, IV Part B, Soc. Czech. Mathematicians and Physicists, Prague, 1977, pp. 168–169. Zbl 0387.54009, MR 0461446
Reference: [9] Hoshina T.: Countable-points compactifications for metric spaces.Fund. Math. 103 (1979), 123–132. Zbl 0416.54018, MR 0543874
Reference: [10] Hoshina T.: Countable-points compactifications of product spaces.Tsukuba J. Math. 6 (1982), 231–236. Zbl 0535.54009, MR 0705116
Reference: [11] Morita K.: On bicompactifications of semibicompact spaces.Sci. R. Tokyo Bunrika Daigaku Sect. A 4 (1952), 200–207. Zbl 0049.39801, MR 0052089
Reference: [12] Porter J.R.: Lattices of H-closed extensions.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 831–837. Zbl 0295.54028, MR 0355964
Reference: [13] Porter J.R., Vermeer J.: Spaces with coarser Hausdorff topologies.Trans. Amer. Math. Soc. 289 (1985), no. 1, 59–71. MR 0779052, 10.1090/S0002-9947-1985-0779052-1
Reference: [14] Porter J.R., Votaw C.: H-closed extensions. II.Trans. Amer. Math. Soc. 202 (1975), 193–209. Zbl 0274.54012, MR 0365493
Reference: [15] Porter J.R., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces.Springer, Berllin, 1988. Zbl 0652.54016, MR 0918341
Reference: [16] Terada T.: On countable discrete compactifications.General Topology Appl. 7 (1977), 321–327. Zbl 0364.54017, MR 0500840
Reference: [17] Tikoo M.L.: Remainders of H-closed extensions.Topology Appl. 23 (1986), 117–128. Zbl 0592.54024, MR 0855451, 10.1016/0166-8641(86)90033-7
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_9.pdf 553.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo