Title:
|
Evaluating many valued modus ponens (English) |
Author:
|
Hliněná, Dana |
Author:
|
Biba, Vladislav |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
48 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
465-477 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper deals with many valued case of modus ponens. Cases with implicative and with clausal rules are studied. Many valued modus ponens via discrete connectives is studied with implicative rules as well as with clausal rules. Some properties of discrete modus ponens operator are given. (English) |
Keyword:
|
modus ponens |
Keyword:
|
fuzzy logic |
Keyword:
|
aggregation deficit |
Keyword:
|
discrete connectives |
MSC:
|
03E72 |
MSC:
|
68T15 |
idMR:
|
MR2975801 |
. |
Date available:
|
2012-08-31T15:55:42Z |
Last updated:
|
2013-09-24 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142949 |
. |
Reference:
|
[1] De Baets, B.: Coimplicators, the forgotten connectives.Tatra Mt. Math. Publ. 12 (1997), 229–240. Zbl 0954.03029, MR 1607142 |
Reference:
|
[2] Fodor, J. C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994. Zbl 0827.90002 |
Reference:
|
[3] Gottwald, S.: Fuzzy Sets and Fuzzy Logic.Vieweg, Braunschweig 1993. Zbl 1088.03024, MR 1218623 |
Reference:
|
[4] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer Acad. Publ., Dordrecht 1999. Zbl 1007.03022, MR 1900263 |
Reference:
|
[5] Horváth, T., Vojtáš, P.: Induction of Fuzzy and Annotated Logic Programs.In: ILP 2006 (S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad, eds.), LNAI 4455, Springer-Verlag, Berlin – Heidelberg 2007, pp. 260–274. Zbl 1201.68089, MR 2499612 |
Reference:
|
[6] Kacprzyk, J., Pasi, G., Vojtáš, P., et al.: Fuzzy querying: Issues and perspectives.Kybernetika 36 (2000), 6, 605–616. |
Reference:
|
[7] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms.Kluwer, Dordrecht 2000. Zbl 1087.20041, MR 1790096 |
Reference:
|
[8] Krajči, S., Lencses, R., Vojtáš, P.: A comparison of fuzzy and annotated logic programming.Fuzzy Sets and Systems 144 (2004), 173–192. Zbl 1065.68024, MR 2072454 |
Reference:
|
[9] Mesiar, R.: Generated conjunctors and related operators in MV-logic as a basis for AI applications.In: ECAI'98 Workshop W17, Brighton, pp. 1–5. |
Reference:
|
[10] Mundici, D., Olivetti, N.: Resolution and model building in the infinite valued calculus of Łukasiewicz.Theoret. Comp. Sci. 200 (1998), 335–366. Zbl 0921.03013, MR 1625499, 10.1016/S0304-3975(98)00012-7 |
Reference:
|
[11] Smutná, D., Vojtáš, P.: New connectives for (full)fuzzy resolution.In: Advances in Soft Computing, Physica-Verlag, Heidelberg 2000, pp. 146–151. Zbl 0986.03021 |
Reference:
|
[12] Smutná-Hliněná, D., Vojtáš, P.: Graded many valued resolution with aggregation.Fuzzy Sets and Systems 143 (2004), 157–168. Zbl 1054.03021, 10.1016/j.fss.2003.06.010 |
Reference:
|
[13] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces.North Holland, New York 1983. Zbl 0546.60010, MR 0790314 |
Reference:
|
[14] Šabo, M.: On many valued implications.Tatra Mt. Math. Publ. 14 (1998), 161–167. Zbl 0940.03061, MR 1651207 |
Reference:
|
[15] Vojtáš, P.: Fuzzy reasoning with tunable t-operators.J. Adv. Comp. Intell. 2 (1998), 121–127. |
. |