[2] Benjamini, Y., Hochberg, Y.:
Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B (Methodological) 57 (1995), 289–300.
MR 1325392 |
Zbl 0809.62014
[3] Berrar, D. P., Dubitzky, M., Granzow, M., eds.: A Practical Approach to Microarray Data Analysis. Springer, Dordecht 2009.
[4] Breitwieser, F. P., Müller, A., Dayon, L., Köcher, T., Hainard, A., Pichler, P., Schmidt-Erfurth, U., Superti-Furga, G., Sanchez, J.-C., Mechtler, K., Bennett, K. L., Colinge, J.:
General statistical modeling of data from protein relative expression isobaric tags. J. Proteome Res. 10 (2011), 2758–2766.
DOI 10.1021/pr1012784
[5] Croux, C., Rousseuw, P. J.: Alternatives to the median absolute deviation. In: Computational Statistics (Y. Dodge J. and Whittaker, eds.), Physica 1, Heidelberg 1992, pp. 411–428.
[6] Gentleman, R., Carey, V., Huber, W., Irizarry, R., Dudoit, S.:
Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, New York 2005.
MR 2201836 |
Zbl 1142.62100
[7] Holm, S.:
A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 (1979), 65–70.
MR 0538597 |
Zbl 0402.62058
[8] Hundertmark, C., Fischer, R., Reinl, T., May, S., Klawonn, F., Jänsch, J.:
MS-specific noise model reveals the potential of iTRAQ in quantitative proteomics. Bioinformatics 25 (2009), 1004–1011.
DOI 10.1093/bioinformatics/btn551
[9] Klawonn, F., Hundertmark, C., Jänsch, L.: A maximum likelihood approach to noise estimation for intensity measurements in biology. In: Proc. Sixth IEEE International Conference on Data Mining: Workshops (S. Tsumoto, C. W. Clifton, N. Zhong, X. Wu, J. Liu, B. W. Wah, and Y.-M. Cheung, eds.), IEEE, Los Alamitos 2006, pp. 180–184.
[10] Klawonn, F., Wüstefeld, T., Zender, L.: Statistical modelling for data from experiments with short hairpin RNAs. In: Advances in Intelligent Data Analysis IX, Springer, Berlin 2010, pp. 79–90.
[11] Development Core Team, R.:
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2009,
http://www.R-project.org
[12] Robinson, M. D., Oshlack, A.:
A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11 (2010), R25.
DOI 10.1186/gb-2010-11-3-r25
[15] Smyth, G. K.:
LIMMA: Linear models for microarray data. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor (R. Gentleman, V. Carey, W. Huber, R. Irizarry, and S. Dudoit, eds.), Springer, New York 2005, pp. 397–420.
MR 2201836