Previous |  Up |  Next

Article

Title: The AP-Denjoy and AP-Henstock integrals revisited (English)
Author: Skvortsov, Valentin A.
Author: Sworowski, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 581-591
Summary lang: English
.
Category: math
.
Summary: The note is related to a recently published paper J. M. Park, J. J. Oh, C.-G. Park, D. H. Lee: The AP-Denjoy and AP-Henstock integrals. Czech. Math. J. 57 (2007), 689–696, which concerns a descriptive characterization of the approximate Kurzweil-Henstock integral. We bring to attention known results which are stronger than those contained in the aforementioned work. We show that some of them can be formulated in terms of a derivation basis defined by a local system of which the approximate basis is known to be a particular case. We also consider the relation between the $\sigma $-finiteness of variational measure generated by a function and the classical notion of the generalized bounded variation. (English)
Keyword: approximate Kurzweil-Henstock integral
Keyword: approximate continuity
Keyword: local system
Keyword: variational measure
MSC: 26A39
MSC: 26A42
MSC: 26A46
idZBL: Zbl 1265.26019
idMR: MR2984620
DOI: 10.1007/s10587-012-0050-5
.
Date available: 2012-11-10T20:57:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143010
.
Reference: [1] Bongiorno, B., Piazza, L. Di, Skvortsov, V. A.: On dyadic integrals and some other integrals associated with local systems.J. Math. Anal. Appl. 271 (2002), 506-524. Zbl 1010.26006, MR 1923649, 10.1016/S0022-247X(02)00146-4
Reference: [2] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the Ward property of $\mathcal P$-adic path bases.Czech. Math. J. 56(131) (2006), 559-578. MR 2291756, 10.1007/s10587-006-0037-1
Reference: [3] Ene, V.: Real Functions---Current Topics. Lecture Notes in Mathematics, Vol. 1603.Springer Berlin (1995). MR 1369575
Reference: [4] Ene, V.: Characterizations of $ VBG \cap\mathcal N$.Real Anal. Exch. 23 (1997), 611-630. MR 1639992, 10.2307/44153985
Reference: [5] Ene, V.: Thomson's variational measure.Real Anal. Exch. 24 (1998), 523-565. Zbl 0968.26007, MR 1704732, 10.2307/44152978
Reference: [6] Gordon, R. A.: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral.Real Anal. Exch. 16 (1991), 154-168. Zbl 0723.26005, MR 1087481
Reference: [7] Park, J. M., Oh, J. J., Kim, J., Lee, H. K.: The equivalence of the {AP}-Henstock and {AP}-Denjoy integrals.J. Chungcheong Math. Soc. 17 (2004), 103-110.
Reference: [8] Park, J. M., Kim, Y. K., Yoon, J. H.: Some properties of the {AP}-Denjoy integral.Bull. Korean Math. Soc. 42 (2005), 535-541. Zbl 1090.26002, MR 2162209, 10.4134/BKMS.2005.42.3.535
Reference: [9] Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H.: The {AP}-Denjoy and {AP}-Henstock integrals.Czech. Math. J. 57(132) (2007), 689-696. Zbl 1174.26308, MR 2337623, 10.1007/s10587-007-0106-0
Reference: [10] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics.109 Cambridge (1993). MR 1268404
Reference: [11] Saks, S.: Theory of the Integral.G. E. Stechert & Co New York (1937). Zbl 0017.30004
Reference: [12] Sworowski, P., Skvortsov, V. A.: Variational measure determined by an approximative differential basis.Mosc. Univ. Math. Bull. 57 (2002), 37-40. MR 1933126
Reference: [13] Thomson, B. S.: Derivation bases on the real line.Real Anal. Exch. 8 (1983), 67-207, 278-442. Zbl 0525.26003, 10.2307/44151585
Reference: [14] Thomson, B. S.: Real Functions. Lecture Notes in Mathematics.1170 Springer Berlin (1985). MR 0818744
Reference: [15] Wang, C., Ding, C. S.: An integral involving Thomson's local systems.Real Anal. Exch. 19 (1994), 248-253. Zbl 0802.26004
.

Files

Files Size Format View
CzechMathJ_62-2012-3_1.pdf 280.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo