Title:
|
The two-parameter class of Schröder inversions (English) |
Author:
|
Schröder, Joachim |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2013 |
Pages:
|
5-19 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Infinite lower triangular matrices of generalized Schröder numbers are used to construct a two-parameter class of invertible sequence transformations. Their inverses are given by triangular matrices of coordination numbers. The two-parameter class of Schröder transformations is merged into a one-parameter class of stretched Riordan arrays, the left-inverses of which consist of matrices of crystal ball numbers. Schröder and inverse Schröder transforms of important sequences are calculated. (English) |
Keyword:
|
generalized Schröder numbers |
Keyword:
|
coordination numbers |
Keyword:
|
crystal ball numbers |
Keyword:
|
stretched Riordan array |
Keyword:
|
triangular matrix |
Keyword:
|
sequence transformation |
Keyword:
|
inversion |
Keyword:
|
left-inverse |
MSC:
|
05A10 |
MSC:
|
05A15 |
MSC:
|
05A19 |
idMR:
|
MR3038068 |
. |
Date available:
|
2013-02-21T13:59:12Z |
Last updated:
|
2015-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143149 |
. |
Reference:
|
[1] Aigner M.: Diskrete Mathematik.Vieweg, Braunschweig, 1993. Zbl 1109.05001, MR 1243412 |
Reference:
|
[2] Bernstein M., Sloane N.J.A.: Some canocial sequences of integers.Linear Algebra Appl. 226–228, (1995), 57–72. MR 1344554 |
Reference:
|
[3] Bower C.G.: \rm transforms2.; http://oeis.org/transforms2.html as from August 2011, published electronically. |
Reference:
|
[4] Conway J.H., Sloane N.J.A.: Low Dimensional lattices VII: Coordination sequences.Proc. Royal Soc. London Ser. A Math. Phys. Eng. Sci. 453 (1997), 2369–2389; {citeseer.ist.psu.edu/article/conway96lowdimensional.html}. Zbl 1066.11505, MR 1480120, 10.1098/rspa.1997.0126 |
Reference:
|
[5] Corsani C., Merlini D., Sprugnoli R.: Left-inversion of combinatorial sums.Discrete Math. 180 (1998), 107–122. Zbl 0903.05005, MR 1603705, 10.1016/S0012-365X(97)00110-6 |
Reference:
|
[6] Gould H.W., Hsu L.C.: Some new inverse series relations.Duke Math. J. 40 (1973), 885–891. MR 0337652, 10.1215/S0012-7094-73-04082-9 |
Reference:
|
[7] Krattenthaler C.: A new matrix inverse.Proc. Amer. Math. Soc. 124 (1996), 47–59. Zbl 0843.15005, MR 1291781, 10.1090/S0002-9939-96-03042-0 |
Reference:
|
[8] Riordan J.: Combinatorial Identities.Wiley, New York, 1968. Zbl 0517.05006, MR 0231725 |
Reference:
|
[9] Riordan J.: Inverse relations and combinatorial identities.Amer. Math. Monthly 71 (1964), 485–498. Zbl 0128.01603, MR 0169791, 10.2307/2312584 |
Reference:
|
[10] Schröder E.: Vier combinatorische Probleme.Z. Math. Phys. 15 (1870), 361–376. |
Reference:
|
[11] Schröder J.: Generalized Schröder numbers and the rotation principle.; J. Integer Seq. 10 (2007), 1–15, Article 07.7.7, http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Schroder/schroder45.pdf. MR 2346050 |
Reference:
|
[12] Sloane N.J.A.: transforms.; http://oeis.org/transforms.html as from August 2011, published electronically. |
Reference:
|
[13] Sloane N.J.A., and Mathematical Community: The On-Line Encyclopedia of Integer Sequences.; http://www.research.att.com/ njas/sequences/. |
Reference:
|
[14] Sprugnoli R.: Riordan arrays and combinatorial sums.Discrete Math. 132 (1994), 267–290. Zbl 0814.05003, MR 1297386, 10.1016/0012-365X(92)00570-H |
Reference:
|
[15] Stanley R.P.: Enumerative Combinatorics.Vol. 2, Cambridge University Press, Cambridge, 1999. Zbl 0978.05002, MR 1676282 |
Reference:
|
[16] Sulanke R.A.: A recurrence restricted by a diagonal condition: generalized Catalan arrays.Fibonacci Q. 27 (1989), 33–46. Zbl 0666.10008, MR 0981063 |
. |