Previous |  Up |  Next

Article

Title: The two-parameter class of Schröder inversions (English)
Author: Schröder, Joachim
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 1
Year: 2013
Pages: 5-19
Summary lang: English
.
Category: math
.
Summary: Infinite lower triangular matrices of generalized Schröder numbers are used to construct a two-parameter class of invertible sequence transformations. Their inverses are given by triangular matrices of coordination numbers. The two-parameter class of Schröder transformations is merged into a one-parameter class of stretched Riordan arrays, the left-inverses of which consist of matrices of crystal ball numbers. Schröder and inverse Schröder transforms of important sequences are calculated. (English)
Keyword: generalized Schröder numbers
Keyword: coordination numbers
Keyword: crystal ball numbers
Keyword: stretched Riordan array
Keyword: triangular matrix
Keyword: sequence transformation
Keyword: inversion
Keyword: left-inverse
MSC: 05A10
MSC: 05A15
MSC: 05A19
idMR: MR3038068
.
Date available: 2013-02-21T13:59:12Z
Last updated: 2015-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143149
.
Reference: [1] Aigner M.: Diskrete Mathematik.Vieweg, Braunschweig, 1993. Zbl 1109.05001, MR 1243412
Reference: [2] Bernstein M., Sloane N.J.A.: Some canocial sequences of integers.Linear Algebra Appl. 226–228, (1995), 57–72. MR 1344554
Reference: [3] Bower C.G.: \rm transforms2.; http://oeis.org/transforms2.html as from August 2011, published electronically.
Reference: [4] Conway J.H., Sloane N.J.A.: Low Dimensional lattices VII: Coordination sequences.Proc. Royal Soc. London Ser. A Math. Phys. Eng. Sci. 453 (1997), 2369–2389; {citeseer.ist.psu.edu/article/conway96lowdimensional.html}. Zbl 1066.11505, MR 1480120, 10.1098/rspa.1997.0126
Reference: [5] Corsani C., Merlini D., Sprugnoli R.: Left-inversion of combinatorial sums.Discrete Math. 180 (1998), 107–122. Zbl 0903.05005, MR 1603705, 10.1016/S0012-365X(97)00110-6
Reference: [6] Gould H.W., Hsu L.C.: Some new inverse series relations.Duke Math. J. 40 (1973), 885–891. MR 0337652, 10.1215/S0012-7094-73-04082-9
Reference: [7] Krattenthaler C.: A new matrix inverse.Proc. Amer. Math. Soc. 124 (1996), 47–59. Zbl 0843.15005, MR 1291781, 10.1090/S0002-9939-96-03042-0
Reference: [8] Riordan J.: Combinatorial Identities.Wiley, New York, 1968. Zbl 0517.05006, MR 0231725
Reference: [9] Riordan J.: Inverse relations and combinatorial identities.Amer. Math. Monthly 71 (1964), 485–498. Zbl 0128.01603, MR 0169791, 10.2307/2312584
Reference: [10] Schröder E.: Vier combinatorische Probleme.Z. Math. Phys. 15 (1870), 361–376.
Reference: [11] Schröder J.: Generalized Schröder numbers and the rotation principle.; J. Integer Seq. 10 (2007), 1–15, Article 07.7.7, http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Schroder/schroder45.pdf. MR 2346050
Reference: [12] Sloane N.J.A.: transforms.; http://oeis.org/transforms.html as from August 2011, published electronically.
Reference: [13] Sloane N.J.A., and Mathematical Community: The On-Line Encyclopedia of Integer Sequences.; http://www.research.att.com/ njas/sequences/.
Reference: [14] Sprugnoli R.: Riordan arrays and combinatorial sums.Discrete Math. 132 (1994), 267–290. Zbl 0814.05003, MR 1297386, 10.1016/0012-365X(92)00570-H
Reference: [15] Stanley R.P.: Enumerative Combinatorics.Vol. 2, Cambridge University Press, Cambridge, 1999. Zbl 0978.05002, MR 1676282
Reference: [16] Sulanke R.A.: A recurrence restricted by a diagonal condition: generalized Catalan arrays.Fibonacci Q. 27 (1989), 33–46. Zbl 0666.10008, MR 0981063
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-1_2.pdf 269.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo