Previous |  Up |  Next

Article

Title: Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces (English)
Author: Černý, Robert
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 557-571
Summary lang: English
.
Category: math
.
Summary: Let $n\geq 2$ and $\Omega\subset \mathbb R^n$ be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space $W_0L^{\Phi}(\Omega)$, where the Young function $\Phi$ behaves like $t^n\log^{\alpha}(t)$, $\alpha<n-1$, for $t$ large, into the Zygmund space $Z_0^{\frac{n-1-\alpha}{n}}(\Omega)$. We also study the same problem for the embedding of the generalized Lorentz-Sobolev space $W_0^mL^{\frac{n}{m},q}\log^{\alpha}L(\Omega)$, $m< n$, $q\in (1,\infty]$, $\alpha<\frac{1}{q'}$, embedded into the Zygmund space $Z_0^{\frac{1}{q'}-\alpha}(\Omega)$. (English)
Keyword: Orlicz-Sobolev spaces
Keyword: Lorentz-Sobolev spaces
Keyword: Trudinger embedding
Keyword: Moser-Trudinger inequality
Keyword: best constants
MSC: 26D10
MSC: 46E30
MSC: 46E35
idMR: MR3016426
.
Date available: 2013-03-02T13:40:49Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143190
.
Reference: [1] Adachi S., Tanaka K.: Trudinger type inequalities in $\mathbb R^N$ and their best exponents.Proc. Amer. Math. Soc. 128 (199), no. 7, 2051–2057. MR 1646323, 10.1090/S0002-9939-99-05180-1
Reference: [2] Adams D.R.: A sharp inequality of J. Moser for higher order derivatives.Ann. of Math. 128 (1988), 385–398. Zbl 0672.31008, MR 0960950, 10.2307/1971445
Reference: [3] Adimurthi,: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393–413. MR 1079983
Reference: [4] Adimurthi,: Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in $\mathbb R^2$.Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 49–73. MR 1004638, 10.1007/BF02874647
Reference: [5] Alberico A.: Moser type inequalities for higher-order derivatives in Lorentz spaces.Potential Anal. 28 (2008), 389–400. Zbl 1152.46019, MR 2403289, 10.1007/s11118-008-9085-5
Reference: [6] Alvino A.: A limit case of the Sobolev inequality in Lorentz spaces.Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), 105–112. MR 0501652
Reference: [7] Alvino A., Ferone V., Trombetti G.: Moser-type inequalities in Lorentz spaces.Potential Anal. 5 (1996), 273–299. Zbl 0856.46020, MR 1389498
Reference: [8] Cassani D., Ruf B., Tarsi C.: Best constants for Moser type inequalities in Zygmund spaces.Mat. Contemp. 36 (2009), 79–90. Zbl 1196.46023, MR 2582539
Reference: [9] Černý R.: Concentration-compactness principle for embedding into multiple exponential spaces.Math. Inequal. Appl. 15 (2012), no. 1, 165–198. Zbl 1236.46027, MR 2919441
Reference: [10] Černý R., Cianchi A., Hencl S.: Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs.Ann. Mat. Pura Appl., to appear (preprint is available at http://www.karlin.mff.cuni.cz/kma-preprints/).
Reference: [11] Černý R., Gurka P.: Moser-type inequalities for generalized Lorentz-Sobolev spaces.Houston. Math. J., to appear (preprint is available at http://www.karlin.mff.cuni.cz/kma-preprints/).
Reference: [12] Černý R., Mašková S.: A sharp form of an embedding into multiple exponential spaces.Czechoslovak Math. J. 60 (2010), no. 3, 751–782. MR 2672414, 10.1007/s10587-010-0048-9
Reference: [13] Cianchi A.: A sharp embedding theorem for Orlicz-Sobolev spaces.Indiana Univ. Math. J. 45 (1996), 39–65. Zbl 0860.46022, MR 1406683, 10.1512/iumj.1996.45.1958
Reference: [14] Cianchi A.: Moser-Trudinger inequalities without boundary conditions and isoperimetric problems.Indiana Univ. Math. J. 54 (2005), 669–705. Zbl 1097.46016, MR 2151230, 10.1512/iumj.2005.54.2589
Reference: [15] Edmunds D.E., Gurka P., Opic B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces.Indiana Univ. Math. J. 44 (1995), 19–43. Zbl 0826.47021, MR 1336431, 10.1512/iumj.1995.44.1977
Reference: [16] Edmunds D.E., Gurka P., Opic B.: Double exponential integrability, Bessel potentials and embedding theorems.Studia Math. 115 (1995), 151–181. Zbl 0829.47024, MR 1347439
Reference: [17] Edmunds D.E., Gurka P., Opic B.: Sharpness of embeddings in logarithmic Bessel-potential spaces.Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995-1009. Zbl 0860.46024, MR 1415818
Reference: [18] Edmunds D.E., Gurka P., Opic B.: On embeddings of logarithmic Bessel potential spaces.J. Funct. Anal. 146 (1997), 116–150. Zbl 0934.46036, MR 1446377, 10.1006/jfan.1996.3037
Reference: [19] Edmunds D.E., Gurka P., Opic B.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms.J. Funct. Anal. 170 (2000), 307–355. MR 1740655, 10.1006/jfan.1999.3508
Reference: [20] Edmunds D.E., Krbec M.: Two limiting cases of Sobolev imbeddings.Houston J. Math. 21 (1995), 119–128. Zbl 0835.46027, MR 1331250
Reference: [21] Fusco N., Lions P.-L., Sbordone C.: Sobolev imbedding theorems in borderline cases.Proc. Amer. Math. Soc. 124 (1996), 561–565. Zbl 0841.46023, MR 1301025, 10.1090/S0002-9939-96-03136-X
Reference: [22] Hencl S.: A sharp form of an embedding into exponential and double exponential spaces.J. Funct. Anal. 204 (2003), no. 1, 196–227. Zbl 1034.46031, MR 2004749, 10.1016/S0022-1236(02)00172-6
Reference: [23] Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit case, Part I.Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 0834360, 10.4171/RMI/6
Reference: [24] Lorentz G.G.: On the theory of spaces $\Lambda$.Pacific J. Math. 1 (1951), 411–429. Zbl 0043.11302, MR 0044740, 10.2140/pjm.1951.1.411
Reference: [25] Moser J.: A sharp form of an inequality by N. Trudinger.Indiana Univ. Math. J. 20 (1971), 1077–1092. MR 0301504, 10.1512/iumj.1971.20.20101
Reference: [26] Opic B., Pick L.: On generalized Lorentz-Zygmund spaces.Math. Inequal. Appl. 2 (1999), no. 3, 391–467. Zbl 0956.46020, MR 1698383
Reference: [27] Pohozhaev S.I.: On the imbedding Sobolev theorem for $pl=n$.Doklady Conference, Section Math., pp. 158–170, Moscow Power Inst., Moscow, 1965.
Reference: [28] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces.Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991. Zbl 0724.46032, MR 1113700
Reference: [29] Trudinger N.S.: On imbeddings into Orlicz spaces and some applications.J. Math. Mech. 17 (1967), 473–484. Zbl 0163.36402, MR 0216286
Reference: [30] Yudovich V.I.: Some estimates connected with integral operators and with solutions of elliptic equations.Soviet Math. Doklady 2 (1961), 746–749. Zbl 0144.14501
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_5.pdf 276.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo