Previous |  Up |  Next

Article

Title: On non-periodic groups whose finitely generated subgroups are either permutable or pronormal (English)
Author: Kurdachenko, L. A.
Author: Subbotin, I. Ya.
Author: Ermolkevich, T. I.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 1
Year: 2013
Pages: 61-74
Summary lang: English
.
Category: math
.
Summary: The current article considers some infinite groups whose finitely generated subgroups are either permutable or pronormal. A group $G$ is called a generalized radical, if $G$ has an ascending series whose factors are locally nilpotent or locally finite. The class of locally generalized radical groups is quite wide. For instance, it includes all locally finite, locally soluble, and almost locally soluble groups. The main result of this paper is the following\endgraf Theorem. Let $G$ be a locally generalized radical group whose finitely generated subgroups are either pronormal or permutable. If $G$ is non-periodic then every subgroup of $G$ is permutable. (English)
Keyword: pronormal subgroup
Keyword: permutable subgroup
Keyword: finitely generated subgroup
Keyword: abnormal subgroup
MSC: 20E07
MSC: 20E15
MSC: 20E25
MSC: 20E34
MSC: 20F14
MSC: 20F19
MSC: 20F22
idZBL: Zbl 1264.20029
idMR: MR3076221
DOI: 10.21136/MB.2013.143230
.
Date available: 2013-03-02T18:53:46Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143230
.
Reference: [1] Baer, R.: Arrangement of subgroups and the structure of a group.Sitzungber. Heidelberger Akad. Wiss. 2 (1933), 12-17 German.
Reference: [2] Dedekind, R.: Groups with all normal subgroups.German Math. Ann. 48 (1897), 548-561.
Reference: [3] Dixon, M. R., Subbotin, I. Ya.: Groups with finiteness conditions on some subgroup systems: a contemporary stage.Algebra Discrete Math. No. 4 2009 (2009), 29-54. Zbl 1199.20051, MR 2681481
Reference: [4] Ebert, G., Bauman, S.: A note of subnormal and abnormal chains.J. Algebra 36 (1975), 287-293. MR 0412271, 10.1016/0021-8693(75)90103-9
Reference: [5] Falco, M. De, Kurdachenko, L. A., Subbotin, I. Ya.: Groups with only abnormal and subnormal subgroups.Atti Sem. Mat. Fis. Univ. Modena 47 (1998), 435-442. Zbl 0918.20017, MR 1665935
Reference: [6] Gruenberg, K. W.: The Engel elements of soluble groups.Illinois J. Math. 3 (1959), 151-168. MR 0104730, 10.1215/ijm/1255455117
Reference: [7] Fattahi, A.: Groups with only normal and abnormal subgroups.J. Algebra 28 (1974), 15-19. Zbl 0274.20022, MR 0335628, 10.1016/0021-8693(74)90019-2
Reference: [8] Hall, P.: Some sufficient conditions for a group to be nilpotent.Illinois J. Math. 2 (1958), 787-801. Zbl 0084.25602, MR 0105441, 10.1215/ijm/1255448649
Reference: [9] Kurdachenko, L. A., Otal, J., Subbotin, I. Ya.: Artinian Modules over Group Rings.Birkhaüser, Basel (2007). Zbl 1110.16001, MR 2270897
Reference: [10] Kurdachenko, L. A., Smith, H.: Groups with all subgroups either subnormal or self-normalizing.J. Pure Appl. Algebra 196 (2005), 271-278. Zbl 1078.20026, MR 2110525, 10.1016/j.jpaa.2004.08.005
Reference: [11] Kurdachenko, L. A., Subbotin, I. Ya., Chupordya, V. A.: On some near to nilpotent groups.Fundam. Appl. Math. 14 (2008), 121-134. MR 2533617
Reference: [12] Kurdachenko, L. A., Subbotin, I. Ya., Ermolkevich, T. I.: Groups whose finitely generated subgroups are either permutable or pronormal.Asian-European J. Math. 4 (2011), 459-473. Zbl 1256.20038, MR 2842657, 10.1142/S1793557111000381
Reference: [13] Kuzennyi, N. F., Subbotin, I. Ya.: New characterization of locally nilpotent $ \overline{IH}$-groups.Russian Ukrain. Mat. J. 40 (1988), 322-326. MR 0952119
Reference: [14] Kuzennyi, N. F., Subbotin, I. Ya.: Locally soluble groups in which all infinite subgroups are pronormal.Russian Izv. Vyssh. Ucheb. Zaved., Mat. 11 (1988), 77-79. MR 0983287
Reference: [15] Legovini, P.: Finite groups whose subgroups are either subnormal or pronormal.Italian Rend. Semin. Mat. Univ. Padova 58 (1977), 129-147. MR 0543135
Reference: [16] Legovini, P.: Finite groups whose subgroups are either subnormal or pronormal. II.Italian Rend. Semin. Mat. Univ. Padova 65 (1981), 47-51. Zbl 0482.20013, MR 0653281
Reference: [17] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian.Trans. Amer. Math. Soc. 4 (1903), 389-404. MR 1500650, 10.1090/S0002-9947-1903-1500650-9
Reference: [18] Olshanskii, A. Yu.: Geometry of Defining Relations in Groups.Kluwer Acad. Publ., Dordrecht (1991). MR 1191619
Reference: [19] Peng, T. A.: Finite groups with pronormal subgroups.Proc. Amer. Math. Soc. 20 (1969), 232-234. MR 0232850, 10.1090/S0002-9939-1969-0232850-1
Reference: [20] Plotkin, B. I.: Radical groups.Russian Mat. Sbornik 37 (1955), 507-526. Zbl 0128.25402, MR 0075208
Reference: [21] Rose, J. S.: Nilpotent subgroups of finite soluble groups.Math. Z. 106 (1968), 97-112. Zbl 0169.03402, MR 0252516, 10.1007/BF01110717
Reference: [22] Schmidt, O. Yu.: Groups whose all subgroups are special.Russian Mat. Sbornik 31 (1925), 366-372.
Reference: [23] Schmidt, R.: Subgroups Lattices of Groups.Walter de Gruyter, Berlin (1994).
Reference: [24] Shemetkov, L. A.: Formations of Finite Groups.Russian Nauka, Moskva (1978). Zbl 0496.20014, MR 0519875
Reference: [25] Stonehewer, S. E.: Permutable subgroups of infinite groups.Math. Z. 126 (1972), 1-16. Zbl 0219.20021, MR 0294510, 10.1007/BF01111111
Reference: [26] Zacher, G.: Finite soluble groups in which composition subgroups are quasi-normal.Italian Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 37 (1964), 150-154.
.

Files

Files Size Format View
MathBohem_138-2013-1_6.pdf 276.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo