Previous |  Up |  Next

Article

Title: Domination with respect to nondegenerate properties: vertex and edge removal (English)
Author: Samodivkin, Vladimir
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 1
Year: 2013
Pages: 75-85
Summary lang: English
.
Category: math
.
Summary: In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate property $\mathcal {P}$, denoted by $\gamma _{\mathcal {P}} (G)$, when a graph $G$ is modified by deleting a vertex or deleting edges. A graph $G$ is $(\gamma _{\mathcal {P}}(G), k)_{\mathcal {P}}$-critical if $\gamma _{\mathcal {P}} (G-S) < \gamma _{\mathcal {P}} (G)$ for any set $S \subsetneq V(G)$ with $|S|=k$. Properties of $(\gamma _{\mathcal {P}}, k)_{\mathcal {P}}$-critical graphs are studied. The plus bondage number with respect to the property $\mathcal {P}$, denoted $b_{\mathcal {P}}^+ (G)$, is the cardinality of the smallest set of edges $U \subseteq E(G)$ such that $\gamma _{\mathcal {P}} (G-U) >\gamma _{\mathcal {P}} (G)$. Some known results for ordinary domination and bondage numbers are extended to $\gamma _{\mathcal {P}} (G)$ and $b_{\mathcal {P}}^+ (G)$. Conjectures concerning $b_{\mathcal {P}}^+ (G)$ are posed. (English)
Keyword: dominating set
Keyword: domination number
Keyword: bondage number
Keyword: additive graph property
Keyword: hereditary graph property
Keyword: induced-hereditary graph property
MSC: 05C69
idZBL: Zbl 1274.05363
idMR: MR3076222
DOI: 10.21136/MB.2013.143231
.
Date available: 2013-03-02T18:55:14Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143231
.
Reference: [1] Ao, S.: Independent domination critical graphs.Master's Dissertation, University of Victoria (1994).
Reference: [2] Bange, D., Barkauskas, A., Slater, P.: Efficient Dominating Sets in Graphs. Applications of Discrete Mathematics.R. D. Ringeisen, F. S. Roberts SIAM, Philadelphia, PA (1988), 189-199. MR 0974633
Reference: [3] Bauer, D., Harary, F., Nieminen, J., Suffel, S.: Domination alteration sets in graphs.Discrete Math. 47 (1983), 153-161. Zbl 0524.05040, MR 0724653, 10.1016/0012-365X(83)90085-7
Reference: [4] Brigham, R., Chinn, P., Dutton, R.: Vertex domination-critical graphs.Networks 18 (1988), 173-179. Zbl 0658.05042, MR 0953920, 10.1002/net.3230180304
Reference: [5] Brigham, R., Haynes, T., Henning, M., Rall, D.: Bicritical domination.Discrete Math. 305 (2005), 18-32. Zbl 1078.05062, MR 2186680, 10.1016/j.disc.2005.09.013
Reference: [6] Fricke, G., Haynes, T., Hedetniemi, S., Hedetniemi, S., Laskar, R.: Excellent trees.Bull. Inst. Comb. Appl. 34 (2002), 27-38. Zbl 0995.05036, MR 1880562
Reference: [7] Fulman, J., Hanson, D., MacGillivray, G.: Vertex domination-critical graphs.Networks 25 (1995), 41-43. Zbl 0820.05038, MR 1321108, 10.1002/net.3230250203
Reference: [8] Goddard, W., Haynes, T., Knisley, D.: Hereditary domination and independence parameters.Discuss. Math. Graph Theory 24 (2004), 239-248. Zbl 1065.05069, MR 2120566, 10.7151/dmgt.1228
Reference: [9] Hartnel, B., Rall, D.: Bounds on the bondage number of a graph.Discrete Math. 128 (1994), 173-177. MR 1271863, 10.1016/0012-365X(94)90111-2
Reference: [10] Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of domination in graphs.Marcel Dekker, New York, NY (1998). Zbl 0890.05002, MR 1605684
Reference: [11] Michalak, D.: Domination, independence and irredundance with respect to additive induced-hereditary properties.Discrete Math. 286 (2004), 141-146. MR 2084289, 10.1016/j.disc.2003.11.054
Reference: [12] Mojdeh, D., Firoozi, P.: Characteristics of $(\gamma,3)$-critical graphs.Appl. Anal. Discrete Math. 4 (2010), 197-206. Zbl 1265.05468, MR 2654940, 10.2298/AADM100206013M
Reference: [13] Mojdeh, D., Firoozi, P., Hasni, R.: On connected $(\gamma,k)$-critical graphs.Australas. J. Comb. 46 (2010), 25-35. Zbl 1196.05064, MR 2598690
Reference: [14] Samodivkin, V.: Domination with respect to nondegenerate and hereditary properties.Math. Bohem. 133 (2008), 167-178. Zbl 1199.05269, MR 2428312
Reference: [15] Samodivkin, V.: Changing and unchanging of the domination number of a graph.Discrete Math. 308 (2008), 5015-5025. Zbl 1157.05044, MR 2450438, 10.1016/j.disc.2007.08.088
Reference: [16] Samodivkin, V.: The bondage number of graphs: good and bad vertices.Discuss. Math., Graph Theory 28 (2008), 453-462. Zbl 1173.05037, MR 2514202, 10.7151/dmgt.1419
Reference: [17] Samodivkin, V.: Domination with respect to nondegenerate properties: bondage number.Australas. J. Comb. 45 (2009), 217-226. Zbl 1207.05145, MR 2554536
Reference: [18] Sampathkumar, E., Neeralagi, P.: Domination and neighborhood critical fixed, free and totally free points.Sankhy\=a 54 (1992), 403-407. MR 1234719
Reference: [19] Sumner, D., Wojcicka, E.: Graphs critical with respect to the domination number. Domination in Graphs: Advanced Topics.T. Haynes, S. T. Hedetniemi, P. Slater Marcel Dekker, New York (1998), 471-489. MR 1605701
Reference: [20] Teschner, U.: A new upper bound for the bondage number of a graphs with small domination number.Australas. J. Comb. 12 (1995), 27-35. MR 1349195
Reference: [21] Teschner, U.: The bondage number of a graphs $G$ can be much greater than $\Delta (G)$.Ars Comb. 43 (1996), 81-87. MR 1415976
Reference: [22] Walikar, H., Acharya, B.: Domination critical graphs.Nat. Acad. Sci. Lett. 2 (1979), 70-72. Zbl 0401.05056
.

Files

Files Size Format View
MathBohem_138-2013-1_7.pdf 262.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo