Title:
|
Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity (English) |
Author:
|
Laasri, Hafida |
Author:
|
El-Mennaoui, Omar |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
4 |
Year:
|
2013 |
Pages:
|
887-908 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem $$ ({\rm P}) \begin {cases} \dot {u}(t)+A(t)u(t)=f(t)\quad t\text {-a.e. on} [0,\tau ], u(0)=0, \end {cases} $$ where $A\colon [0,\tau ]\to \mathcal {L}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset {d}\to {\hookrightarrow }X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P). (English) |
Keyword:
|
maximal regularity |
Keyword:
|
on-autonomous evolution equation |
Keyword:
|
stability for linear evolution equation |
Keyword:
|
integrability for linear evolution equation |
MSC:
|
35K90 |
MSC:
|
47D06 |
idZBL:
|
Zbl 06373950 |
idMR:
|
MR3165503 |
DOI:
|
10.1007/s10587-013-0060-y |
. |
Date available:
|
2014-01-28T14:04:31Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143605 |
. |
Reference:
|
[1] Amann, H.: Maximal regularity for nonautonomous evolution equations.Adv. Nonlinear Stud. 4 (2004), 417-430. Zbl 1072.35103, MR 2100906, 10.1515/ans-2004-0404 |
Reference:
|
[2] Arendt, W.: Semigroups and evolution equations: Functional calculus, regularity and kernel estimates.Handbook of Differential Equations: Evolutionary Equations vol. I C. M. Dafermos et al. Elsevier/North-Holland Amsterdam (2004), 1-85. Zbl 1082.35001, MR 2103696 |
Reference:
|
[3] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96.Birkhäuser Basel (2001). MR 1886588 |
Reference:
|
[4] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity.Math. Z. 240 (2002), 311-343. Zbl 1018.47008, MR 1900314, 10.1007/s002090100384 |
Reference:
|
[5] Arendt, W., Bu, S.: Tools for maximal regularity.Math. Proc. Camb. Philos. Soc. 134 (2003), 317-336. Zbl 1041.47018, MR 1972141, 10.1017/S0305004102006345 |
Reference:
|
[6] Arendt, W., Bu, S.: Fourier series in Banach spaces and maximal regularity.Vector Measures, Integration and Related Topics. Selected papers from the 3rd conference on vector measures and integration, Eichsttt, Germany, September 24-26, 2008. Operator Theory: Advances and Applications 201 Birkhäuser Basel (2010), 21-39. Zbl 1254.42015, MR 2743491 |
Reference:
|
[7] Arendt, W., Chill, R., Fornaro, S., Poupaud, C.: $L^p$-maximal regularity for nonautonomous evolution equations.J. Differ. Equations 237 (2007), 1-26. Zbl 1126.34037, MR 2327725, 10.1016/j.jde.2007.02.010 |
Reference:
|
[8] Cannarsa, P., Vespri, V.: On maximal $L^{p}$ regularity for the abstract Cauchy problem.Boll. Unione Mat. Ital., VI. Ser., B 5 (1986), 165-175. MR 0841623 |
Reference:
|
[9] Prato, G. Da, Grisvard, P.: Sommes d'opérateurs linéaires et équations différentielles opérationnelles.J. Math. Pur. Appl., IX. Sér. 54 (1975), 305-387 French. Zbl 0315.47009, MR 0442749 |
Reference:
|
[10] Simon, L. De: Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine.Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian. Zbl 0196.44803, MR 0176192 |
Reference:
|
[11] Denk, R., Hieber, M., Prüss, J.: $\mathcal{R}$-boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type.Mem. Am. Math. Soc. Providence RI 166 (2003). MR 2006641 |
Reference:
|
[12] Dore, G.: $L^{p}$-regularity for abstract differential equations.Functional Analysis and Related Topics, 1991. Proceedings of the international conference in memory of Professor Kôsaku Yosida held at RIMS, Kyoto University, Japan, July 29--Aug. 2, 1991. Lect. Notes Math. 1540 Springer Berlin (1993), 25-38. MR 1225809 |
Reference:
|
[13] El-Mennaoui, O., Keyantuo, V., Laasri, H.: Infinitesimal product of semigroups.Ulmer Seminare 16 (2011), 219-230. |
Reference:
|
[14] Hieber, M., Monniaux, S.: Heat kernels and maximal $L_p-L_q$ estimates: The non-autonomous case.J. Fourier Anal. Appl. 6 (2000), 468-481. Zbl 0979.35028, 10.1007/BF02511541 |
Reference:
|
[15] Hieber, M., Monniaux, S.: Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations.Proc. Am. Math. Soc. 128 (2000), 1047-1053. Zbl 0937.35195, MR 1641630, 10.1090/S0002-9939-99-05145-X |
Reference:
|
[16] Kalton, N. J., Lancien, G.: A solution to the problem of $L^p$-maximal regularity.Math. Z. 235 (2000), 559-568. Zbl 1010.47024, MR 1800212, 10.1007/PL00004816 |
Reference:
|
[17] Kunstmann, P. C., Weis, L.: Maximal $L^p$-regularity for parabolic equations, Fourier multiplier theorems and $H^{\infty}$-functional calculus.Functional Analytic Methods for Evolution Equations. Based on lectures given at the autumn school on evolution equations and semigroups, Levico Terme, Trento, Italy, October 28--November 2, 2001. Lecture Notes in Mathematics 1855 M. Iannelli, et al. Springer Berlin (2004), 65-311. Zbl 1097.47041, MR 2108959, 10.1007/978-3-540-44653-8_2 |
Reference:
|
[18] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications 16.Birkhäuser Basel (1995). MR 1329547 |
Reference:
|
[19] Portal, P., Štrkalj, Ž.: Pseudodifferential operators on Bochner spaces and an application.Math. Z. 253 (2006), 805-819. Zbl 1101.47030, MR 2221100, 10.1007/s00209-006-0934-x |
Reference:
|
[20] Prüss, J., Schnaubelt, R.: Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time.J. Math. Anal. Appl. 256 (2001), 405-430. Zbl 0994.35076, MR 1821747, 10.1006/jmaa.2000.7247 |
Reference:
|
[21] Slavík, A.: Product Integration, Its History and Applications. History of Mathematics 29, Jindřich Nečas Center for Mathematical Modeling Lecture Notes 1.Matfyzpress Praha (2007). MR 2917851 |
Reference:
|
[22] Sobolevskij, P. E.: Coerciveness inequalities for abstract parabolic equations.Sov. Math., Dokl. 5 (1964), 894-897 <title>Dokl. Akad. Nauk SSSR 157 (1964), 52-55 Russian. Zbl 0149.36001, MR 0166487 |
Reference:
|
[23] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78.Birkhäuser Basel (1983). MR 0781540 |
. |