Previous |  Up |  Next

Article

Title: Artinian cofinite modules over complete Noetherian local rings (English)
Author: Sadeghi, Behrouz
Author: Bahmanpour, Kamal
Author: A'zami, Jafar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 877-885
Summary lang: English
.
Category: math
.
Summary: Let $(R,\mathfrak {m})$ be a complete Noetherian local ring, $I$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module. In this paper it is shown that if $\mathfrak p$ is a prime ideal of $R$ such that $\dim R/\mathfrak p=1$ and $(0:_M\mathfrak p)$ is not finitely generated and for each $i\geq 2$ the $R$-module ${\rm Ext}^i_R(M,R/\mathfrak p)$ is of finite length, then the $R$-module ${\rm Ext}^1_R(M,R/\mathfrak p)$ is not of finite length. Using this result, it is shown that for all finitely generated $R$-modules $N$ with $\operatorname {Supp}(N)\subseteq V(I)$ and for all integers $i\geq 0$, the $R$-modules ${\rm Ext}^i_R(N,M)$ are of finite length, if and only if, for all finitely generated $R$-modules $N$ with $\operatorname {Supp}(N)\subseteq V(I)$ and for all integers $i\geq 0$, the $R$-modules ${\rm Ext}^i_R(M,N)$ are of finite length. (English)
Keyword: Artinian module
Keyword: cofinite module
Keyword: Krull dimension
Keyword: local cohomology
MSC: 13D45
MSC: 13E10
MSC: 14B15
idZBL: Zbl 06282116
idMR: MR3165502
DOI: 10.1007/s10587-013-0059-4
.
Date available: 2014-01-28T14:02:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143604
.
Reference: [1] Abazari, R., Bahmanpour, K.: Cofiniteness of extension functors of cofinite modules.J. Algebra 330 (2011), 507-516. Zbl 1227.13010, MR 2774642, 10.1016/j.jalgebra.2010.11.016
Reference: [2] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension.J. Algebra. 321 (2009), 1997-2011. Zbl 1168.13016, MR 2494753, 10.1016/j.jalgebra.2008.12.020
Reference: [3] Bahmanpour, K., Naghipour, R., Sedghi, M.: On the category of cofinite modules which is Abelian.(to appear) in Proc. Am. Math. Soc.
Reference: [4] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627
Reference: [5] Delfino, D.: On the cofiniteness of local cohomology modules.Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. Zbl 0806.13005, MR 1253283, 10.1017/S0305004100071929
Reference: [6] Delfino, D., Marley, T.: Cofinite modules and local cohomology.J. Pure Appl. Algebra 121 (1997), 45-52. Zbl 0893.13005, MR 1471123, 10.1016/S0022-4049(96)00044-8
Reference: [7] Grothendieck, A.: Local Cohomology. A seminar given by A. Grothendieck, Harvard University, Fall 1961. Notes by R. Hartshorne.Lecture Notes in Mathematics 41 Springer, Berlin (1967). Zbl 0185.49202, MR 0224620
Reference: [8] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554
Reference: [9] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. Zbl 0749.13007, MR 1120477, 10.1017/S0305004100070493
Reference: [10] Irani, Y., Bahmanpour, K.: Finiteness properties of extension functors of cofinite modules.Bull. Korean Math. Soc. 50 (2013), 649-657. MR 3137709, 10.4134/BKMS.2013.50.2.649
Reference: [11] Kawasaki, K.-I.: On the finiteness of Bass numbers of local cohomology modules.Proc. Am. Math. Soc. 124 (1996), 3275-3279. Zbl 0860.13011, MR 1328354, 10.1090/S0002-9939-96-03399-0
Reference: [12] Kawasaki, K.-I.: On a category of cofinite modules which is abelian.Math. Z. 269 (2011), 587-608. Zbl 1228.13020, MR 2836085, 10.1007/s00209-010-0751-0
Reference: [13] Matsumura, H.: Commutative Ring Theory. Transl. from the Japanese by M. Reid.Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1986). Zbl 0603.13001, MR 0879273
Reference: [14] Melkersson, L.: Modules cofinite with respect to an ideal.J. Algebra 285 (2005), 649-668. Zbl 1093.13012, MR 2125457, 10.1016/j.jalgebra.2004.08.037
Reference: [15] Melkersson, L.: Properties of cofinite modules and applications to local cohomology.Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. Zbl 0921.13009, MR 1656785, 10.1017/S0305004198003041
Reference: [16] Yoshida, K. I.: Cofiniteness of local cohomology modules for ideals of dimension one.Nagoya Math. J. 147 (1997), 179-191. Zbl 0899.13018, MR 1475172, 10.1017/S0027763000006371
.

Files

Files Size Format View
CzechMathJ_63-2013-4_2.pdf 249.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo