Title:
|
Artinian cofinite modules over complete Noetherian local rings (English) |
Author:
|
Sadeghi, Behrouz |
Author:
|
Bahmanpour, Kamal |
Author:
|
A'zami, Jafar |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
4 |
Year:
|
2013 |
Pages:
|
877-885 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(R,\mathfrak {m})$ be a complete Noetherian local ring, $I$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module. In this paper it is shown that if $\mathfrak p$ is a prime ideal of $R$ such that $\dim R/\mathfrak p=1$ and $(0:_M\mathfrak p)$ is not finitely generated and for each $i\geq 2$ the $R$-module ${\rm Ext}^i_R(M,R/\mathfrak p)$ is of finite length, then the $R$-module ${\rm Ext}^1_R(M,R/\mathfrak p)$ is not of finite length. Using this result, it is shown that for all finitely generated $R$-modules $N$ with $\operatorname {Supp}(N)\subseteq V(I)$ and for all integers $i\geq 0$, the $R$-modules ${\rm Ext}^i_R(N,M)$ are of finite length, if and only if, for all finitely generated $R$-modules $N$ with $\operatorname {Supp}(N)\subseteq V(I)$ and for all integers $i\geq 0$, the $R$-modules ${\rm Ext}^i_R(M,N)$ are of finite length. (English) |
Keyword:
|
Artinian module |
Keyword:
|
cofinite module |
Keyword:
|
Krull dimension |
Keyword:
|
local cohomology |
MSC:
|
13D45 |
MSC:
|
13E10 |
MSC:
|
14B15 |
idZBL:
|
Zbl 06282116 |
idMR:
|
MR3165502 |
DOI:
|
10.1007/s10587-013-0059-4 |
. |
Date available:
|
2014-01-28T14:02:59Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143604 |
. |
Reference:
|
[1] Abazari, R., Bahmanpour, K.: Cofiniteness of extension functors of cofinite modules.J. Algebra 330 (2011), 507-516. Zbl 1227.13010, MR 2774642, 10.1016/j.jalgebra.2010.11.016 |
Reference:
|
[2] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension.J. Algebra. 321 (2009), 1997-2011. Zbl 1168.13016, MR 2494753, 10.1016/j.jalgebra.2008.12.020 |
Reference:
|
[3] Bahmanpour, K., Naghipour, R., Sedghi, M.: On the category of cofinite modules which is Abelian.(to appear) in Proc. Am. Math. Soc. |
Reference:
|
[4] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627 |
Reference:
|
[5] Delfino, D.: On the cofiniteness of local cohomology modules.Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. Zbl 0806.13005, MR 1253283, 10.1017/S0305004100071929 |
Reference:
|
[6] Delfino, D., Marley, T.: Cofinite modules and local cohomology.J. Pure Appl. Algebra 121 (1997), 45-52. Zbl 0893.13005, MR 1471123, 10.1016/S0022-4049(96)00044-8 |
Reference:
|
[7] Grothendieck, A.: Local Cohomology. A seminar given by A. Grothendieck, Harvard University, Fall 1961. Notes by R. Hartshorne.Lecture Notes in Mathematics 41 Springer, Berlin (1967). Zbl 0185.49202, MR 0224620 |
Reference:
|
[8] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554 |
Reference:
|
[9] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. Zbl 0749.13007, MR 1120477, 10.1017/S0305004100070493 |
Reference:
|
[10] Irani, Y., Bahmanpour, K.: Finiteness properties of extension functors of cofinite modules.Bull. Korean Math. Soc. 50 (2013), 649-657. MR 3137709, 10.4134/BKMS.2013.50.2.649 |
Reference:
|
[11] Kawasaki, K.-I.: On the finiteness of Bass numbers of local cohomology modules.Proc. Am. Math. Soc. 124 (1996), 3275-3279. Zbl 0860.13011, MR 1328354, 10.1090/S0002-9939-96-03399-0 |
Reference:
|
[12] Kawasaki, K.-I.: On a category of cofinite modules which is abelian.Math. Z. 269 (2011), 587-608. Zbl 1228.13020, MR 2836085, 10.1007/s00209-010-0751-0 |
Reference:
|
[13] Matsumura, H.: Commutative Ring Theory. Transl. from the Japanese by M. Reid.Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1986). Zbl 0603.13001, MR 0879273 |
Reference:
|
[14] Melkersson, L.: Modules cofinite with respect to an ideal.J. Algebra 285 (2005), 649-668. Zbl 1093.13012, MR 2125457, 10.1016/j.jalgebra.2004.08.037 |
Reference:
|
[15] Melkersson, L.: Properties of cofinite modules and applications to local cohomology.Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. Zbl 0921.13009, MR 1656785, 10.1017/S0305004198003041 |
Reference:
|
[16] Yoshida, K. I.: Cofiniteness of local cohomology modules for ideals of dimension one.Nagoya Math. J. 147 (1997), 179-191. Zbl 0899.13018, MR 1475172, 10.1017/S0027763000006371 |
. |