Previous |  Up |  Next

Article

Title: On the $f$- and $h$-triangle of the barycentric subdivision of a simplicial complex (English)
Author: Ahmad, Sarfraz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 989-994
Summary lang: English
.
Category: math
.
Summary: For a simplicial complex $\Delta $ we study the behavior of its $f$- and $h$-triangle under the action of barycentric subdivision. In particular we describe the $f$- and $h$-triangle of its barycentric subdivision $\mathop {\rm sd}(\Delta )$. The same has been done for $f$- and $h$-vector of $\mathop {\rm sd}(\Delta )$ by F. Brenti, V. Welker (2008). As a consequence we show that if the entries of the $h$-triangle of $\Delta $ are nonnegative, then the entries of the $h$-triangle of $\mathop {\rm sd}(\Delta )$ are also nonnegative. We conclude with a few properties of the $h$-triangle of $\mathop {\rm sd}(\Delta )$. (English)
Keyword: symmetric group
Keyword: simplicial complex
Keyword: $f$- and $h$-vector (triangle)
Keyword: barycentric subdivision of a simplicial complex
MSC: 05A05
MSC: 05E40
MSC: 05E45
idZBL: Zbl 1301.05004
idMR: MR3165509
DOI: 10.1007/s10587-013-0066-5
.
Date available: 2014-01-28T14:11:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143611
.
Reference: [1] Björner, A., Wachs, M. L.: Shellable nonpure complexes and posets I.Trans. Am. Math. Soc. 348 1299-1327 (1996). Zbl 0857.05102, MR 1333388, 10.1090/S0002-9947-96-01534-6
Reference: [2] Brenti, F., Welker, V.: $f$-vectors of barycentric subdivisions.Math. Z. 259 849-865 (2008). Zbl 1158.52013, MR 2403744, 10.1007/s00209-007-0251-z
Reference: [3] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra.Graduate Texts in Mathematics 227 Springer, New York (2005). Zbl 1090.13001, MR 2110098
Reference: [4] Stanley, R. P.: Combinatorics and Commutative Algebra.Progress in Mathematics 41 Birkhäuser, Basel (1996). Zbl 0838.13008, MR 1453579
.

Files

Files Size Format View
CzechMathJ_63-2013-4_9.pdf 229.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo