Previous |  Up |  Next

Article

Title: Linearization relations for the generalized Bedient polynomials of the first and second kinds via their integral representations (English)
Author: Lin, Shy-Der
Author: Liu, Shuoh-Jung
Author: Lu, Han-Chun
Author: Srivastava, Hari Mohan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 969-987
Summary lang: English
.
Category: math
.
Summary: The main object of this paper is to investigate several general families of hypergeometric polynomials and their associated multiple integral representations. By suitably specializing our main results, the corresponding integral representations are deduced for such familiar classes of hypergeometric polynomials as (for example) the generalized Bedient polynomials of the first and second kinds. Each of the integral representations, which are derived in this paper, may be viewed also as a linearization relationship for the product of two different members of the associated family of hypergeometric polynomials. (English)
Keyword: hypergeometric function
Keyword: hypergeometric polynomial
Keyword: Srivastava polynomial
Keyword: Bedient polynomial
Keyword: generalized Bedient polynomial of the first and second kinds
Keyword: multiple integral representation
Keyword: Gamma function
Keyword: Eulerian beta integral linearization relationship
Keyword: Pochhammer symbol
Keyword: shifted factorial
MSC: 33C45
MSC: 33C65
MSC: 42C05
idZBL: Zbl 06373955
idMR: MR3165508
DOI: 10.1007/s10587-013-0065-6
.
Date available: 2014-01-28T14:11:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143610
.
Reference: [1] Appell, P., Fériet, J. Kampé de: Fonctions hypergéométriques et hypersphériques. Polynomes d'Hermite.Gauthier-Villars Paris (1926).
Reference: [2] Bedient, P. E.: Polynomials Related to Appell Functions of Two Variables.Ph.D. Thesis University of Michigan (1959). MR 2612826
Reference: [3] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions Vol. I.Bateman Manuscript Project McGraw-Hill Book Co. New York (1953). Zbl 0051.30303
Reference: [4] González, B., Matera, J., Srivastava, H. M.: Some $q$-generating functions and associated generalized hypergeometric polynomials.Math. Comput. Modelling 34 (2001), 133-175. MR 1834567, 10.1016/S0895-7177(01)00053-X
Reference: [5] Khan, M. A., Khan, A. H., Singh, M.: Integral representations for the product of Krawtchouk, Meixner, Charlier and Gottlieb polynomials.Int. J. Math. Anal., Ruse 5 (2011), 199-206. Zbl 1235.42022, MR 2776557
Reference: [6] Lin, S.-D., Chao, Y.-S., Srivastava, H. M.: Some families of hypergeometric polynomials and associated integral representations.J. Math. Anal. Appl. 294 (2004), 399-411. Zbl 1048.33012, MR 2061333, 10.1016/j.jmaa.2004.01.024
Reference: [7] Lin, S.-D., Liu, S.-J., Lu, H.-C., Srivastava, H. M.: Integral representations for the generalized Bedient polynomials and the generalized Cesàro polynomials.Appl. Math. Comput. 218 (2011), 1330-1341. Zbl 1242.33022, MR 2831641, 10.1016/j.amc.2011.06.016
Reference: [8] Lin, S.-D., Liu, S.-J., Srivastava, H. M.: Some families of hypergeometric polynomials and associated multiple integral representations.Integral Transforms Spec. Funct. 22 (2011), 403-414. Zbl 1258.33007, MR 2811972, 10.1080/10652469.2010.515055
Reference: [9] Lin, S.-D., Srivastava, H. M., Wang, P.-Y.: Some families of hypergeometric transformations and generating relations.Math. Comput. Modelling 36 (2002), 445-459. Zbl 1042.33005, MR 1928601, 10.1016/S0895-7177(02)00175-9
Reference: [10] Liu, S.-J., Chyan, C.-J., Lu, H.-C., Srivastava, H. M.: Multiple integral representations for some families of hypergeometric and other polynomials.Math. Comput. Modelling 54 (2011), 1420-1427. Zbl 1228.33002, MR 2812165, 10.1016/j.mcm.2011.04.013
Reference: [11] Magnus, W., Oberhettinger, F., Soni, R. P.: Formulas and Theorems for the Special Functions of Mathematical Physics.3rd enlarged ed., Die Grundlehren der mathematischen Wissenschaften 52 Springer, Berlin (1966). Zbl 0143.08502, MR 0232968
Reference: [12] Srivastava, H. M.: A contour integral involving Fox's $H$-function.Indian J. Math. 14 (1972), 1-6. Zbl 0226.33016, MR 0330548
Reference: [13] Srivastava, H. M., Joshi, C. M.: Integral representation for the product of a class of generalized hypergeometric polynomials.Acad. R. Belg., Bull. Cl. Sci., V. Ser. 60 (1974), 919-926. Zbl 0288.33007, MR 0355131
Reference: [14] Srivastava, H. M., Lin, S.-D., Liu, S.-J., Lu, H.-C.: Integral representations for the Lagrange polynomials, Shively's pseudo-Laguerre polynomials, and the generalized Bessel polynomials.Russ. J. Math. Phys. 19 (2012), 121-130. Zbl 1259.33013, MR 2892608, 10.1134/S1061920812010104
Reference: [15] Srivastava, H. M., Manocha, H. L.: A Treatise on Generating Functions.Ellis Horwood Series in Mathematics and Its Applications Ellis Horwood Limited, Chichester (1984). Zbl 0535.33001, MR 0750112
Reference: [16] Srivastava, H. M., Özarslan, M. A., Kaanoğlu, C.: Some families of generating functions for a certain class of three-variable polynomials.Integral Transforms Spec. Funct. 21 (2010), 885-896. Zbl 1223.33019, MR 2739383, 10.1080/10652469.2010.481439
Reference: [17] Srivastava, H. M., Panda, R.: An integral representation for the product of two Jacobi polynomials.J. Lond. Math. Soc., II. Ser. 12 (1976), 419-425. Zbl 0304.33015, MR 0404726, 10.1112/jlms/s2-12.4.419
Reference: [18] Szegö, G.: Orthogonal Polynomials.4th ed. American Mathematical Society Colloquium Publications Vol. 23 AMS, Providence (1975). Zbl 0305.42011, MR 0372517
Reference: [19] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis.An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Repr. of the 4th ed. 1927 Cambridge University Press, Cambridge (1996). Zbl 0951.30002, MR 1424469
.

Files

Files Size Format View
CzechMathJ_63-2013-4_8.pdf 303.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo