Title:
|
A symplectic representation of $E_7$ (English) |
Author:
|
Dray, Tevian |
Author:
|
Manogue, Corinne A. |
Author:
|
Wilson, Robert A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
3 |
Year:
|
2014 |
Pages:
|
387-399 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We explicitly construct a particular real form of the Lie algebra $\mathfrak e_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak e_7\cong \mathfrak{sp}(6,\mathbb O)$ and, at the group level, $E_7\cong\text{Sp}(6,\mathbb O)$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak e_7$ in terms of rank 3 objects called cubies. (English) |
Keyword:
|
exceptional Lie algebras |
Keyword:
|
octonions |
Keyword:
|
$E_7$ |
MSC:
|
17A35 |
MSC:
|
17B25 |
MSC:
|
20G41 |
idZBL:
|
Zbl 06391549 |
idMR:
|
MR3225616 |
. |
Date available:
|
2015-01-19T10:54:55Z |
Last updated:
|
2016-10-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143814 |
. |
Reference:
|
[1] Freudenthal H.: Lie groups in the foundations of geometry.Adv. Math. 1 (1964), 145–190. Zbl 0125.10003, MR 0170974, 10.1016/0001-8708(65)90038-1 |
Reference:
|
[2] Tits J.: Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles.Indag. Math. 28 (1966), 223–237. Zbl 0139.03204, MR 0219578, 10.1016/S1385-7258(66)50028-2 |
Reference:
|
[3] Dray T., Manogue C.A.: Octonions and the structure of $E_6$.Comment. Math. Univ. Carolin. 51 (2010), 193–207. MR 2682473 |
Reference:
|
[4] Manogue C.A., Dray T.: Octonions, $E_6$, and particle physics.J. Phys.: Conference Series 254 (2010), 012005. |
Reference:
|
[5] Sudbery A.: Division algebras, (pseudo)orthogonal groups and spinors.J. Phys. A17 (1984), 939–955. Zbl 0544.22010, MR 0743176 |
Reference:
|
[6] Barton C.H., Sudbery A.: Magic squares and matrix models of Lie algebras.Adv. Math. 180 (2003), 596–647. Zbl 1077.17011, MR 2020553, 10.1016/S0001-8708(03)00015-X |
Reference:
|
[7] Freudenthal H.: Beziehungen der $E_7$ und $E_8$ zur Oktavenebene, I.Proc. Kon. Ned. Akad. Wet. A57 (1954), 218–230. Zbl 0055.02001, MR 0063358 |
Reference:
|
[8] Brown R.B.: Groups of type $E_7$.J. Reine Angew. Math. 236 (1969), 79–102. MR 0248185 |
Reference:
|
[9] Wilson R.A.: A quaternionic construction of $E_7$.Proc. Amer. Math. Soc. 142 (2014), 867–880. MR 3148521, 10.1090/S0002-9939-2013-11838-1 |
Reference:
|
[10] Manogue C.A., Schray J.: Finite Lorentz transformations, automorphisms, and division algebras.J. Math. Phys. 34 (1993), 3746–3767. Zbl 0797.53075, MR 1230549, 10.1063/1.530056 |
Reference:
|
[11] Kincaid J., Dray T.: Division algebra representations of $ {SO}(4,2)$.arXiv: 1312.7391. |
Reference:
|
[12] Kincaid J.J.: Division algebra representations of $ {SO}(4,2)$.Master's thesis, Oregon State University, 2012, available at http://ir.library.oregonstate.edu/xmlui/handle/1957/30682. |
Reference:
|
[13] Dray T., Huerta J., Kincaid J.: The $2\times2$ Lie group magic square.in preparation. |
Reference:
|
[14] Röhrle G.: On extraspecial parabolic subgroups.Contemp. Math. 153 (1993), 143–155. Zbl 0832.20071, MR 1247502, 10.1090/conm/153/01310 |
. |