Previous |  Up |  Next

Article

Title: A symplectic representation of $E_7$ (English)
Author: Dray, Tevian
Author: Manogue, Corinne A.
Author: Wilson, Robert A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 3
Year: 2014
Pages: 387-399
Summary lang: English
.
Category: math
.
Summary: We explicitly construct a particular real form of the Lie algebra $\mathfrak e_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak e_7\cong \mathfrak{sp}(6,\mathbb O)$ and, at the group level, $E_7\cong\text{Sp}(6,\mathbb O)$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak e_7$ in terms of rank 3 objects called cubies. (English)
Keyword: exceptional Lie algebras
Keyword: octonions
Keyword: $E_7$
MSC: 17A35
MSC: 17B25
MSC: 20G41
idZBL: Zbl 06391549
idMR: MR3225616
.
Date available: 2015-01-19T10:54:55Z
Last updated: 2016-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143814
.
Reference: [1] Freudenthal H.: Lie groups in the foundations of geometry.Adv. Math. 1 (1964), 145–190. Zbl 0125.10003, MR 0170974, 10.1016/0001-8708(65)90038-1
Reference: [2] Tits J.: Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles.Indag. Math. 28 (1966), 223–237. Zbl 0139.03204, MR 0219578, 10.1016/S1385-7258(66)50028-2
Reference: [3] Dray T., Manogue C.A.: Octonions and the structure of $E_6$.Comment. Math. Univ. Carolin. 51 (2010), 193–207. MR 2682473
Reference: [4] Manogue C.A., Dray T.: Octonions, $E_6$, and particle physics.J. Phys.: Conference Series 254 (2010), 012005.
Reference: [5] Sudbery A.: Division algebras, (pseudo)orthogonal groups and spinors.J. Phys. A17 (1984), 939–955. Zbl 0544.22010, MR 0743176
Reference: [6] Barton C.H., Sudbery A.: Magic squares and matrix models of Lie algebras.Adv. Math. 180 (2003), 596–647. Zbl 1077.17011, MR 2020553, 10.1016/S0001-8708(03)00015-X
Reference: [7] Freudenthal H.: Beziehungen der $E_7$ und $E_8$ zur Oktavenebene, I.Proc. Kon. Ned. Akad. Wet. A57 (1954), 218–230. Zbl 0055.02001, MR 0063358
Reference: [8] Brown R.B.: Groups of type $E_7$.J. Reine Angew. Math. 236 (1969), 79–102. MR 0248185
Reference: [9] Wilson R.A.: A quaternionic construction of $E_7$.Proc. Amer. Math. Soc. 142 (2014), 867–880. MR 3148521, 10.1090/S0002-9939-2013-11838-1
Reference: [10] Manogue C.A., Schray J.: Finite Lorentz transformations, automorphisms, and division algebras.J. Math. Phys. 34 (1993), 3746–3767. Zbl 0797.53075, MR 1230549, 10.1063/1.530056
Reference: [11] Kincaid J., Dray T.: Division algebra representations of $ {SO}(4,2)$.arXiv: 1312.7391.
Reference: [12] Kincaid J.J.: Division algebra representations of $ {SO}(4,2)$.Master's thesis, Oregon State University, 2012, available at http://ir.library.oregonstate.edu/xmlui/handle/1957/30682.
Reference: [13] Dray T., Huerta J., Kincaid J.: The $2\times2$ Lie group magic square.in preparation.
Reference: [14] Röhrle G.: On extraspecial parabolic subgroups.Contemp. Math. 153 (1993), 143–155. Zbl 0832.20071, MR 1247502, 10.1090/conm/153/01310
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-3_8.pdf 284.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo