Title:
|
Admissible invariant estimators in a linear model (English) |
Author:
|
Stępniak, Czesław |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
50 |
Issue:
|
3 |
Year:
|
2014 |
Pages:
|
310-321 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathbf{y}$ be observation vector in the usual linear model with expectation $\mathbf{A\beta }$ and covariance matrix known up to a multiplicative scalar, possibly singular. A linear statistic $\mathbf{a}^{T} \mathbf{y}$ is called invariant estimator for a parametric function $\phi = \mathbf{c}^{T}\mathbf{\beta }$ if its MSE depends on $\mathbf{\beta }$ only through $\phi $. It is shown that $ \mathbf{a}^{T}\mathbf{y}$ is admissible invariant for $\phi $, if and only if, it is a BLUE of $\phi ,$ in the case when $\phi $ is estimable with zero variance, and it is of the form $k\widehat{\phi }$, where $k\in \left\langle 0,1\right\rangle $ and $ \widehat{\phi }$ is an arbitrary BLUE, otherwise. This result is used in the one- and two-way ANOVA models. Our paper is self-contained and accessible, also for non-specialists. (English) |
Keyword:
|
linear estimator |
Keyword:
|
invariant estimator |
Keyword:
|
admissibility |
Keyword:
|
one-way/two-way ANOVA |
MSC:
|
62C05 |
MSC:
|
62C15 |
MSC:
|
62J05 |
MSC:
|
62J10 |
idZBL:
|
Zbl 1297.62157 |
idMR:
|
MR3245533 |
DOI:
|
10.14736/kyb-2014-3-0310 |
. |
Date available:
|
2014-07-29T13:04:44Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143878 |
. |
Reference:
|
[1] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators in the general Gauss-Markov model..J. Statist. Plann. Inference 19 (1988), 349-359. Zbl 0656.62076, MR 0955399, 10.1016/0378-3758(88)90042-0 |
Reference:
|
[2] Baksalary, J. K., Markiewicz, A.: A matrix inequality and admissibility of linear estimators with respect to the mean squared error criterion..Linear Algebra Appl. 112 (1989), 9-18. MR 0976326 |
Reference:
|
[3] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators of an arbitrary vector parametric function in the general Gauss-Markov model..J. Statist. Plann. Inference 26 (1990), 161-173. MR 1079260, 10.1016/0378-3758(90)90124-D |
Reference:
|
[4] Cohen, A.: Estimates of linear combinations of the parameters of the mean vector of a multivariate distribution..Ann. Math. Statist. 36 (1965), 78-87. MR 0172399, 10.1214/aoms/1177700272 |
Reference:
|
[5] Cohen, A.: All admissible estimates of the mean vector..Ann. Math. Statist. 37 (1966), 458-463. MR 0189164, 10.1214/aoms/1177699528 |
Reference:
|
[6] Groß, J.: More on concavity of a matrix function..SIAM J. Matrix Anal. Appl. 19 (1998), 365-368. Zbl 0912.15031, MR 1614042, 10.1137/S0895479896311244 |
Reference:
|
[7] Groß, J.: Löwner partial ordering and space preordering of Hermitian non-negative definite matrices..Linear Algebra Appl. 326 (2001), 215-223. Zbl 0979.15019, MR 1815961 |
Reference:
|
[8] Groß, J., Markiewicz, A.: Characterization of admissible linear estimators in the linear model..Linear Algebra Appl. 388 (2004), 239-248. MR 2077862 |
Reference:
|
[9] Halmos, P. R.: Finite-Dimensional Vector Spaces. Second edition..Springer-Verlag, New York 1993. MR 0409503 |
Reference:
|
[10] Ip, W., Wong, H., Liu, J.: Sufficient and admissible estimators in general multivariate linear model..J. Statist. Plann. Inference 135 (2005), 371-383. Zbl 1074.62037, MR 2200475, 10.1016/j.jspi.2004.05.005 |
Reference:
|
[11] Klonecki, W.: Linear estimators of mean vector in linear models: Problem of admissibility..Probab. Math. Statist. 2 (1982), 167-178. MR 0711891 |
Reference:
|
[12] Klonecki, W., Zontek, S.: On the structure of admissible linear estimators..J. Multivariate Anal. 24 (1988), 11-30. Zbl 0664.62008, MR 0925126, 10.1016/0047-259X(88)90098-X |
Reference:
|
[13] Kruskal, W.: When are Gauss-Markov and least squares estimators identical? A coordinate-free approach..Ann. Math. Statist. 39 (1968), 70-75. Zbl 0162.21902, MR 0222998, 10.1214/aoms/1177698505 |
Reference:
|
[14] LaMotte, L. R.: Admissibility in linear models..Ann. Statist. 10 (1982), 245-255. MR 0642736, 10.1214/aos/1176345707 |
Reference:
|
[15] LaMotte, L. R.: On limits of uniquely best linear estimators..Metrika 45 (1997), 197-211. MR 1452063, 10.1007/BF02717103 |
Reference:
|
[16] Lehmann, E. L., Scheffé, H.: Completeness, similar regions, and unbiased estimation - Part 1..Sankhyā A, 10 (1950), 305-340. MR 0039201 |
Reference:
|
[17] Olsen, A., Seely, J., Birkes, D.: Invariant quadratic unbiased estimation for two variance components..Ann. Statist. 4 (1976), 823-1051. Zbl 0344.62060, MR 0418345, 10.1214/aos/1176343586 |
Reference:
|
[18] Rao, C. R.: Linear Statistical Inference..Wiley, New York 1973. Zbl 0256.62002, MR 0346957 |
Reference:
|
[19] Rao, C. R.: Estimation of parameters in a linear model..Ann. Statist. 4 (1976), 1023-1037. Correction Ann. Statist. 7 (1979), 696-696. Zbl 0421.62047, MR 0420979, 10.1214/aos/1176343639 |
Reference:
|
[20] Scheffé, H.: The Analysis of Variance..Wiley, New York 1959. Zbl 0998.62500, MR 0116429 |
Reference:
|
[21] Stępniak, C.: On admissible estimators in a linear model..Biom. J. 26 (1984), 815-816. Zbl 0565.62042, MR 0775200, 10.1002/bimj.4710260725 |
Reference:
|
[22] Stępniak, C.: Ordering of nonnegative definite matrices with application to comparison of linear models..Linear Algebra Appl. 70 (1985), 67-71. Zbl 0578.15019, MR 0808532, 10.1016/0024-3795(85)90043-6 |
Reference:
|
[23] Stępniak, C.: A complete class for linear estimation in a general linear model..Ann. Inst. Statist. Math. A 39 (1987), 563-573. Zbl 0691.62010, MR 0930530, 10.1007/BF02491490 |
Reference:
|
[24] Stępniak, C.: Admissible linear estimators in mixed linear models..J. Multivariate Anal. 31 (1989), 90-106. Zbl 0709.62055, MR 1022355, 10.1016/0047-259X(89)90052-3 |
Reference:
|
[25] Stępniak, C.: Perfect linear models and perfect parametric functions..J. Statist. Plann. Inference 139 (2009), 151-163. Zbl 1149.62319, MR 2473994, 10.1016/j.jspi.2008.04.001 |
Reference:
|
[26] Stępniak, C.: From equivalent linear equations to Gauss-Markov theorem..J. Inequal. Appl. (2010), ID 259672, 5 pages. Zbl 1204.62120, MR 2671027 |
Reference:
|
[27] Stępniak, C.: On a problem with singularity in comparison of linear experiments..J. Statist. Plann. Inference 141 (2011), 2489-2493. Zbl 1214.62076, MR 2775225, 10.1016/j.jspi.2011.01.022 |
Reference:
|
[28] Synówka-Bejenka, E., Zontek, S.: A characterization of admissible linear estimators of fixed and random effects in linear models..Metrika 68 (2008), 157-172. MR 2434311, 10.1007/s00184-007-0149-0 |
Reference:
|
[29] Zontek, S.: Admissibility of limits of the unique locally best estimators with application to variance components models..Probab. Math. Statist. 9 (1988), 29-44. MR 0985523 |
Reference:
|
[30] Zyskind, G.: On canonical forms, non-negative covariance matrices and best and simple least squares estimators in linear models..Ann. Math. Statist. 38 (1967), 1092-1109. MR 0214237, 10.1214/aoms/1177698779 |
. |