Title:
|
The fundamental constituents of iteration digraphs of finite commutative rings (English) |
Author:
|
Nan, Jizhu |
Author:
|
Wei, Yangjiang |
Author:
|
Tang, Gaohua |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
199-208 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a finite commutative ring $R$ and a positive integer $k\geqslant 2$, we construct an iteration digraph $G(R, k)$ whose vertex set is $R$ and for which there is a directed edge from $a\in R$ to $b\in R$ if $b=a^k$. Let $R=R_1\oplus \ldots \oplus R_s$, where $s>1$ and $R_i$ is a finite commutative local ring for $i\in \{1, \ldots , s\}$. Let $N$ be a subset of $\{R_1, \dots , R_s\}$ (it is possible that $N$ is the empty set $\emptyset $). We define the fundamental constituents $G_N^*(R, k)$ of $G(R, k)$ induced by the vertices which are of the form $\{(a_1, \dots , a_s)\in R\colon a_i\in {\rm D}(R_i)$ if $R_i\in N$, otherwise $a_i\in {\rm U}(R_i), i=1,\ldots ,s\},$ where U$(R)$ denotes the unit group of $R$ and D$(R)$ denotes the zero-divisor set of $R$. We investigate the structure of $G_N^*(R, k)$ and state some conditions for the trees attached to cycle vertices in distinct fundamental constituents to be isomorphic. (English) |
Keyword:
|
iteration digraph |
Keyword:
|
fundamental constituent |
Keyword:
|
digraphs product |
MSC:
|
05C05 |
MSC:
|
11A07 |
MSC:
|
13M05 |
idZBL:
|
Zbl 06391487 |
idMR:
|
MR3247455 |
DOI:
|
10.1007/s10587-014-0094-9 |
. |
Date available:
|
2014-09-29T09:52:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143960 |
. |
Reference:
|
[1] Bini, G., Flamini, F.: Finite Commutative Rings and Their Applications.The Kluwer International Series in Engineering and Computer Science 680 Kluwer Academic Publishers, Dordrecht (2002). Zbl 1095.13032, MR 1919698 |
Reference:
|
[2] R. W. Gilmer, Jr.: Finite rings having a cyclic multiplicative group of units.Am. J. Math. 85 (1963), 447-452. Zbl 0113.26501, MR 0154884, 10.2307/2373134 |
Reference:
|
[3] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$.Fibonacci Q. 34 (1996), 226-239. Zbl 0855.05067, MR 1390409 |
Reference:
|
[4] Raghavendran, R.: Finite associative rings.Compos. Math. 21 (1969), 195-229. Zbl 0179.33602, MR 0246905 |
Reference:
|
[5] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$.Commentat. Math. Univ. Carol. 48 (2007), 41-58. MR 2338828 |
Reference:
|
[6] Somer, L., Křížek, M.: The structure of digraphs associated with the congruence $x^k\equiv y\pmod n$.Czech. Math. J. 61 (2011), 337-358. Zbl 1249.11006, MR 2905408, 10.1007/s10587-011-0079-x |
Reference:
|
[7] Wei, Y., Tang, G., Su, H.: The square mapping graphs of finite commutative rings.Algebra Colloq. 19 (2012), 569-580. Zbl 1260.13032, MR 3073410 |
Reference:
|
[8] Wilson, B.: Power digraphs modulo $n$.Fibonacci Q. 36 (1998), 229-239. Zbl 0936.05049, MR 1627384 |
. |