Previous |  Up |  Next

Article

Title: The fundamental constituents of iteration digraphs of finite commutative rings (English)
Author: Nan, Jizhu
Author: Wei, Yangjiang
Author: Tang, Gaohua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 199-208
Summary lang: English
.
Category: math
.
Summary: For a finite commutative ring $R$ and a positive integer $k\geqslant 2$, we construct an iteration digraph $G(R, k)$ whose vertex set is $R$ and for which there is a directed edge from $a\in R$ to $b\in R$ if $b=a^k$. Let $R=R_1\oplus \ldots \oplus R_s$, where $s>1$ and $R_i$ is a finite commutative local ring for $i\in \{1, \ldots , s\}$. Let $N$ be a subset of $\{R_1, \dots , R_s\}$ (it is possible that $N$ is the empty set $\emptyset $). We define the fundamental constituents $G_N^*(R, k)$ of $G(R, k)$ induced by the vertices which are of the form $\{(a_1, \dots , a_s)\in R\colon a_i\in {\rm D}(R_i)$ if $R_i\in N$, otherwise $a_i\in {\rm U}(R_i), i=1,\ldots ,s\},$ where U$(R)$ denotes the unit group of $R$ and D$(R)$ denotes the zero-divisor set of $R$. We investigate the structure of $G_N^*(R, k)$ and state some conditions for the trees attached to cycle vertices in distinct fundamental constituents to be isomorphic. (English)
Keyword: iteration digraph
Keyword: fundamental constituent
Keyword: digraphs product
MSC: 05C05
MSC: 11A07
MSC: 13M05
idZBL: Zbl 06391487
idMR: MR3247455
DOI: 10.1007/s10587-014-0094-9
.
Date available: 2014-09-29T09:52:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143960
.
Reference: [1] Bini, G., Flamini, F.: Finite Commutative Rings and Their Applications.The Kluwer International Series in Engineering and Computer Science 680 Kluwer Academic Publishers, Dordrecht (2002). Zbl 1095.13032, MR 1919698
Reference: [2] R. W. Gilmer, Jr.: Finite rings having a cyclic multiplicative group of units.Am. J. Math. 85 (1963), 447-452. Zbl 0113.26501, MR 0154884, 10.2307/2373134
Reference: [3] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$.Fibonacci Q. 34 (1996), 226-239. Zbl 0855.05067, MR 1390409
Reference: [4] Raghavendran, R.: Finite associative rings.Compos. Math. 21 (1969), 195-229. Zbl 0179.33602, MR 0246905
Reference: [5] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$.Commentat. Math. Univ. Carol. 48 (2007), 41-58. MR 2338828
Reference: [6] Somer, L., Křížek, M.: The structure of digraphs associated with the congruence $x^k\equiv y\pmod n$.Czech. Math. J. 61 (2011), 337-358. Zbl 1249.11006, MR 2905408, 10.1007/s10587-011-0079-x
Reference: [7] Wei, Y., Tang, G., Su, H.: The square mapping graphs of finite commutative rings.Algebra Colloq. 19 (2012), 569-580. Zbl 1260.13032, MR 3073410
Reference: [8] Wilson, B.: Power digraphs modulo $n$.Fibonacci Q. 36 (1998), 229-239. Zbl 0936.05049, MR 1627384
.

Files

Files Size Format View
CzechMathJ_64-2014-1_18.pdf 287.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo