Previous |  Up |  Next

Article

Title: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces (English)
Author: Ohno, Takao
Author: Shimomura, Tetsu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 209-228
Summary lang: English
.
Category: math
.
Summary: Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials. (English)
Keyword: grand Morrey space
Keyword: variable exponent
Keyword: non-doubling measure
Keyword: metric measure space
Keyword: Riesz potential
Keyword: maximal operator
Keyword: Sobolev's inequality
Keyword: Trudinger's exponential inequality
Keyword: continuity
MSC: 31B15
MSC: 46E35
idZBL: Zbl 06391488
idMR: MR3247456
DOI: 10.1007/s10587-014-0095-8
.
Date available: 2014-09-29T09:58:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143961
.
Reference: [1] Adams, D. R.: A note on Riesz potentials.Duke Math. J. 42 (1975), 765-778. Zbl 0336.46038, MR 0458158, 10.1215/S0012-7094-75-04265-9
Reference: [2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1995). Zbl 0834.46021, MR 1411441
Reference: [3] Almeida, A., Hasanov, J., Samko, S. G.: Maximal and potential operators in variable exponent Morrey spaces.Georgian Math. J. 15 (2008), 195-208. Zbl 1263.42002, MR 2428465
Reference: [4] Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications.Stud. Math. 106 (1993), 77-92. Zbl 0810.46030, MR 1226425
Reference: [5] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function.Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. Zbl 0717.42023, MR 0985999
Reference: [6] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^{p}$ spaces.Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238; Corrections to ``The maximal function on variable $L^{p}$ spaces'' Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249. Zbl 1064.42500, MR 2041952
Reference: [7] Diening, L.: Maximal function in generalized Lebesgue spaces $L^{p(\cdot)}$.Math. Inequal. Appl. 7 (2004), 245-253. MR 2057643
Reference: [8] Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$.Math. Nachr. 268 (2004), 31-43. Zbl 1065.46024, MR 2054530, 10.1002/mana.200310157
Reference: [9] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017 Springer, Berlin (2011). Zbl 1222.46002, MR 2790542
Reference: [10] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems.Stud. Math. 115 (1995), 151-181. Zbl 0829.47024, MR 1347439
Reference: [11] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Besselpotential spaces.Proc. R. Soc. Edinb., Sect. A 126 (1996), 995-1009. MR 1415818
Reference: [12] Edmunds, D. E., Hurri-Syrjänen, R.: Sobolev inequalities of exponential type.Isr. J. Math. 123 (2001), 61-92. Zbl 0991.46019, MR 1835289, 10.1007/BF02784120
Reference: [13] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings.Houston J. Math. 21 (1995), 119-128. Zbl 0835.46027, MR 1331250
Reference: [14] Fiorenza, A., Gupta, B., Jain, P.: The maximal theorem for weighted grand Lebesgue spaces.Stud. Math. 188 (2008), 123-133. Zbl 1161.42011, MR 2430998, 10.4064/sm188-2-2
Reference: [15] Fiorenza, A., Krbec, M.: On the domain and range of the maximal operator.Nagoya Math. J. 158 (2000), 43-61. Zbl 1039.42015, MR 1766576, 10.1017/S0027763000007285
Reference: [16] Fiorenza, A., Sbordone, C.: Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$.Stud. Math. 127 (1998), 223-231. Zbl 0891.35039, MR 1489454
Reference: [17] Futamura, T., Mizuta, Y.: Continuity properties of Riesz potentials for function in $L^{p(\cdot)}$ of variable exponent.Math. Inequal. Appl. 8 (2005), 619-631. MR 2174890
Reference: [18] Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent.J. Math. Anal. Appl. 366 (2010), 391-417. Zbl 1193.46016, MR 2600488, 10.1016/j.jmaa.2010.01.053
Reference: [19] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for variable exponent Riesz potentials on metric spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. Zbl 1100.31002, MR 2248828
Reference: [20] Greco, L., Iwaniec, T., Sbordone, C.: Inverting the $p$-harmonic operator.Manuscr. Math. 92 (1997), 249-258. Zbl 0869.35037, MR 1428651, 10.1007/BF02678192
Reference: [21] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey type spaces. Problems in mathematical analysis 50.J. Math. Sci. (N.Y.) 170 (2010), 423-443. MR 2839874, 10.1007/s10958-010-0095-7
Reference: [22] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces.Math. Scand. 107 (2010), 285-304. Zbl 1213.42077, MR 2735097, 10.7146/math.scand.a-15156
Reference: [23] Gunawan, H., Sawano, Y., Sihwaningrum, I.: Fractional integral operators in nonhomogeneous spaces.Bull. Aust. Math. Soc. 80 (2009), 324-334. Zbl 1176.42012, MR 2540365, 10.1017/S0004972709000343
Reference: [24] Hajłasz, P., Koskela, P.: Sobolev met Poincaré.Mem. Am. Math. Soc. 688 (2000), 101 pages. Zbl 0954.46022, MR 1683160
Reference: [25] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator.Real Anal. Exch. 30 (2004/2005), 87-104. MR 2126796
Reference: [26] Hedberg, L. I.: On certain convolution inequalities.Proc. Am. Math. Soc. 36 (1972), 505-510. MR 0312232, 10.1090/S0002-9939-1972-0312232-4
Reference: [27] Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses.Arch. Ration. Mech. Anal. 119 (1992), 129-143. Zbl 0766.46016, MR 1176362, 10.1007/BF00375119
Reference: [28] Iwaniec, T., Sbordone, C.: Riesz transforms and elliptic PDEs with VMO coefficients.J. Anal. Math. 74 (1998), 183-212. Zbl 0909.35039, MR 1631658, 10.1007/BF02819450
Reference: [29] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function.Isr. J. Math. 100 (1997), 117-124. Zbl 0882.43003, MR 1469106, 10.1007/BF02773636
Reference: [30] Kokilashvili, V., Meskhi, A.: Maximal functions and potentials in variable exponent Morrey spaces with non-doubling measure.Complex Var. Elliptic Equ. 55 (2010), 923-936. Zbl 1205.26014, MR 2674873
Reference: [31] Kokilashvili, V., Samko, S. G.: Boundedness of weighted singular integral operators in grand Lebesgue spaces.Georgian Math. J. 18 (2011), 259-269. Zbl 1239.42014, MR 2805980
Reference: [32] Meskhi, A.: Maximal functions, potentials and singular integrals in grand Morrey spaces.Complex Var. Elliptic Equ. 56 (2011), 1003-1019. Zbl 1261.42022, MR 2838234
Reference: [33] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials.J. Math. Soc. Japan 62 (2010), 707-744. Zbl 1200.26007, MR 2648060, 10.2969/jmsj/06230707
Reference: [34] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents.Complex Var. Elliptic Equ. 56 (2011), 671-695. Zbl 1228.31004, MR 2832209
Reference: [35] Mizuta, Y., Shimomura, T.: Continuity properties of Riesz potentials of Orlicz functions.Tohoku Math. J. 61 (2009), 225-240. Zbl 1181.46026, MR 2541407, 10.2748/tmj/1245849445
Reference: [36] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent.J. Math. Soc. Japan 60 (2008), 583-602. Zbl 1161.46305, MR 2421989, 10.2969/jmsj/06020583
Reference: [37] Jr., C. B. Morrey: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8
Reference: [38] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces.Math. Nachr. 166 (1994), 95-103. Zbl 0837.42008, MR 1273325, 10.1002/mana.19941660108
Reference: [39] Peetre, J.: On the theory of $L_{p,\lambda}$ spaces.J. Funct. Anal. 4 (1969), 71-87. MR 0241965, 10.1016/0022-1236(69)90022-6
Reference: [40] Sawano, Y.: Generalized Morrey spaces for non-doubling measures.NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 413-425. Zbl 1173.42317, MR 2465971, 10.1007/s00030-008-6032-5
Reference: [41] Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures.Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. Zbl 1129.42403, MR 2190025, 10.1007/s10114-005-0660-z
Reference: [42] Sbordone, C.: Grand Sobolev spaces and their application to variational problems.Matematiche 51 (1996), 335-347. Zbl 0915.46030, MR 1488076
Reference: [43] Serrin, J.: A remark on Morrey potential.Control Methods in PDE-Dynamical Systems. AMS-IMS-SIAM joint summer research conference, 2005 F. Ancona et al. Contemporary Mathematics 426 American Mathematical Society, Providence (2007), 307-315. MR 2311532
Reference: [44] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095
Reference: [45] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications.J. Math. Mech. 17 (1967), 473-483. Zbl 0163.36402, MR 0216286
Reference: [46] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation.Graduate Texts in Mathematics 120 Springer, Berlin (1989). Zbl 0692.46022, MR 1014685, 10.1007/978-1-4612-1015-3
.

Files

Files Size Format View
CzechMathJ_64-2014-1_19.pdf 302.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo