Previous |  Up |  Next

Article

Title: Directed pseudo-graphs and Lie algebras over finite fields (English)
Author: Boza, Luis
Author: Fedriani, Eugenio Manuel
Author: Núñez, Juan
Author: Pacheco, Ana María
Author: Villar, María Trinidad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 229-239
Summary lang: English
.
Category: math
.
Summary: The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist, up to isomorphism, four, six, fourteen and thirty-four $2$-, $3$-, $4$-, and $5$-dimensional algebras of the studied family, respectively, over the field $\mathbb {Z}/2\mathbb {Z}$. Over $\mathbb {Z}/3\mathbb {Z}$, eight and twenty-two $2$- and $3$-dimensional Lie algebras, respectively, are also found. Finally, some ideas for future research are presented. (English)
Keyword: directed pseudo-graph
Keyword: adjacency matrix
Keyword: Lie algebra
MSC: 05C99
MSC: 17B30
MSC: 17B45
MSC: 17B50
MSC: 17B60
idZBL: Zbl 06391489
idMR: MR3247457
DOI: 10.1007/s10587-014-0096-7
.
Date available: 2014-09-29T09:59:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143962
.
Reference: [1] Boza, L., Fedriani, E. M., Núñez, J.: The relation between oriented pseudo-graphs with multiple edges and some Lie algebras.Actas del IV Encuentro Andaluz de Matemática Discreta (2005), 99-104 Spanish.
Reference: [2] Carriazo, A., Fernández, L. M., Núñez, J.: Combinatorial structures associated with Lie algebras of finite dimension.Linear Algebra Appl. 389 (2004), 43-61. Zbl 1053.05059, MR 2080394
Reference: [3] Ceballos, M., Núñez, J., Tenorio, Á. F.: Complete triangular structures and Lie algebras.Int. J. Comput. Math. 88 (2011), 1839-1851. Zbl 1271.17015, MR 2810866, 10.1080/00207161003767994
Reference: [4] Ceballos, M., Núñez, J., Tenorio, Á. F.: Study of Lie algebras by using combinatorial structures.Linear Algebra Appl. 436 (2012), 349-363. Zbl 1276.17010, MR 2854876
Reference: [5] Ceballos, M., Núñez, J., Tenorio, A. F.: Combinatorial structures and Lie algebras of upper triangular matrices.Appl. Math. Lett. 25 (2012), 514-519. MR 2856025, 10.1016/j.aml.2011.09.049
Reference: [6] Graaf, W. A. de: Classification of solvable Lie algebras.Exp. Math. 14 (2005), 15-25. Zbl 1173.17300, MR 2146516, 10.1080/10586458.2005.10128911
Reference: [7] Fernández, L. M., Martín-Martínez, L.: Lie algebras associated with triangular configurations.Linear Algebra Appl. 407 (2005), 43-63. Zbl 1159.17302, MR 2161914
Reference: [8] Gross, J. L., Yellen, J.: Handbook of Graph Theory.Discrete Mathematics and its Applications CRC Press, Boca Raton (2004). Zbl 1036.05001, MR 2035186
Reference: [9] Hamelink, R. C.: Graph theory and Lie algebra.Many Facets of Graph Theory, Proc. Conf. Western Michigan Univ., Kalamazoo/Mi. 1968 Lect. Notes Math. 110 149-153 Springer, Berlin (1969). Zbl 0187.45504, MR 0256910, 10.1007/BFb0060113
Reference: [10] Núñez, J., Pacheco, A., Villar, M. T.: Discrete mathematics applied to the treatment of some Lie theory problems.Sixth Conference on Discrete Mathematics and Computer Science Univ. Lleida, Lleida (2008), 485-492 Spanish (2008), 485-492. MR 2523385
Reference: [11] Núñez, J., Pacheco, A. M., Villar, M. T.: Study of a family of Lie algebra over $\mathbb Z/3\mathbb Z$.Int. J. Math. Stat. 7 (2010), 40-45. MR 2755406
Reference: [12] Patera, J., Zassenhaus, H.: Solvable Lie algebras of dimension $\leq 4$ over perfect fields.Linear Algebra Appl. 142 (1990), 1-17. MR 1077969
Reference: [13] Varadarajan, V. S.: Lie Groups, Lie Algebras and Their Representations (Reprint of the 1974 edition).Graduate Texts in Mathematics 102 Springer, New York (1984). Zbl 0955.22500, MR 0746308, 10.1007/978-1-4612-1126-6
.

Files

Files Size Format View
CzechMathJ_64-2014-1_20.pdf 287.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo