[2] Bailey, D. H.: 
Sequential Schemes for Classifying and Predicting Ergodic Processes. Ph. D. Thesis, Stanford University 1976. 
MR 2626644[3] Bunea, F., Nobel, A.: 
Sequential procedures for aggregating arbitrary estimators of a conditional mean. IEEE Trans. Inform. Theory 54 (2008), 4, 1725-1735. 
DOI 10.1109/TIT.2008.917657 | 
MR 2450298[4] Feller, W.: 
An Introduction to Probability Theory and its Applications. Vol. II. Second edition. John Wiley and Sons, New York - London - Sydney 1971. 
MR 0270403[6] Morvai, G., Weiss, B.: 
Inferring the conditional mean. Theory Stoch. Process. 11 (2005), 112-120. 
MR 2327452 | 
Zbl 1164.62382[10] Morvai, G., Weiss, B.: Estimating the residual waiting time for binary stationary time series. In: Proc. ITW2009, Volos 2009, pp. 67-70.
[11] Morvai, G., Weiss, B.: 
A note on prediction for discrete time series. Kybernetika 48 (2012), 4, 809-823. 
MR 3013400[12] Ryabko, B. Ya.: 
Prediction of random sequences and universal coding. Probl. Inf. Trans. 24 (1988), 87-96. 
MR 0955983 | 
Zbl 0666.94009[14] Shiryayev, A. N.: 
Probability. Springer-Verlag, New York 1984. 
MR 0737192