Previous |  Up |  Next

Article

Title: Inferring the residual waiting time for binary stationary time series (English)
Author: Morvai, Gusztáv
Author: Weiss, Benjamin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 6
Year: 2014
Pages: 869-882
Summary lang: English
.
Category: math
.
Summary: For a binary stationary time series define $\sigma_n$ to be the number of consecutive ones up to the first zero encountered after time $n$, and consider the problem of estimating the conditional distribution and conditional expectation of $\sigma_n$ after one has observed the first $n$ outputs. We present a sequence of stopping times and universal estimators for these quantities which are pointwise consistent for all ergodic binary stationary processes. In case the process is a renewal process with zero the renewal state the stopping times along which we estimate have density one. (English)
Keyword: nonparametric estimation
Keyword: stationary processes
MSC: 60G10
MSC: 60G25
MSC: 60G40
MSC: 60K05
MSC: 62G05
MSC: 62M10
idZBL: Zbl 1308.62067
idMR: MR3301776
DOI: 10.14736/kyb-2014-6-0869
.
Date available: 2015-01-13T09:46:56Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144113
.
Reference: [1] Algoet, P.: Universal schemes for learning the best nonlinear predictor given the infinite past and side information..IEEE Trans. Inform. Theory 45 (1999), 1165-1185. Zbl 0959.62078, MR 1686250, 10.1109/18.761258
Reference: [2] Bailey, D. H.: Sequential Schemes for Classifying and Predicting Ergodic Processes..Ph. D. Thesis, Stanford University 1976. MR 2626644
Reference: [3] Bunea, F., Nobel, A.: Sequential procedures for aggregating arbitrary estimators of a conditional mean..IEEE Trans. Inform. Theory 54 (2008), 4, 1725-1735. MR 2450298, 10.1109/TIT.2008.917657
Reference: [4] Feller, W.: An Introduction to Probability Theory and its Applications. Vol. II. Second edition..John Wiley and Sons, New York - London - Sydney 1971. MR 0270403
Reference: [5] Györfi, L., Morvai, G., Yakowitz, S.: Limits to consistent on-line forecasting for ergodic time series..IEEE Trans. Inform. Theory 44 (1998), 886-892. Zbl 0899.62122, MR 1607704, 10.1109/18.661540
Reference: [6] Morvai, G., Weiss, B.: Inferring the conditional mean..Theory Stoch. Process. 11 (2005), 112-120. Zbl 1164.62382, MR 2327452
Reference: [7] Morvai, G., Weiss, B.: Order estimation of Markov chains..IEEE Trans. Inform. Theory 51 (2005), 1496-1497. MR 2241507, 10.1109/TIT.2005.844093
Reference: [8] Morvai, G., Weiss, B.: On sequential estimation and prediction for discrete time series..Stoch. Dyn. 7 (2007), 4, 417-437. Zbl 1255.62228, MR 2378577, 10.1142/S021949370700213X
Reference: [9] Morvai, G., Weiss, B.: On Universal estimates for binary renewal processes..Ann. Appl. Probab. 18 (2008), 5, 1970-1992. Zbl 1158.62053, MR 2462556, 10.1214/07-AAP512
Reference: [10] Morvai, G., Weiss, B.: Estimating the residual waiting time for binary stationary time series..In: Proc. ITW2009, Volos 2009, pp. 67-70.
Reference: [11] Morvai, G., Weiss, B.: A note on prediction for discrete time series..Kybernetika 48 (2012), 4, 809-823. MR 3013400
Reference: [12] Ryabko, B. Ya.: Prediction of random sequences and universal coding..Probl. Inf. Trans. 24 (1988), 87-96. Zbl 0666.94009, MR 0955983
Reference: [13] Ryabko, D., Ryabko, B.: Nonparametric statistical inference for ergodic processes..IEEE Trans. Inform. Theory 56 (2010), 3, 1430-1435. MR 2723689, 10.1109/TIT.2009.2039169
Reference: [14] Shiryayev, A. N.: Probability..Springer-Verlag, New York 1984. MR 0737192
Reference: [15] Takahashi, H.: Computational limits to nonparametric estimation for ergodic processes..IEEE Trans. Inform. Theory 57 (2011), 10, 6995-6999. MR 2882275, 10.1109/TIT.2011.2165791
Reference: [16] Zhou, Z., Xu, Z., Wu, W. B.: Long-term prediction intervals of time series..IEEE Trans. Inform. Theory 56 (2010), 3, 1436-1446. MR 2723690, 10.1109/TIT.2009.2039158
.

Files

Files Size Format View
Kybernetika_50-2014-6_2.pdf 302.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo