Title:
|
Inferring the residual waiting time for binary stationary time series (English) |
Author:
|
Morvai, Gusztáv |
Author:
|
Weiss, Benjamin |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
50 |
Issue:
|
6 |
Year:
|
2014 |
Pages:
|
869-882 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a binary stationary time series define $\sigma_n$ to be the number of consecutive ones up to the first zero encountered after time $n$, and consider the problem of estimating the conditional distribution and conditional expectation of $\sigma_n$ after one has observed the first $n$ outputs. We present a sequence of stopping times and universal estimators for these quantities which are pointwise consistent for all ergodic binary stationary processes. In case the process is a renewal process with zero the renewal state the stopping times along which we estimate have density one. (English) |
Keyword:
|
nonparametric estimation |
Keyword:
|
stationary processes |
MSC:
|
60G10 |
MSC:
|
60G25 |
MSC:
|
60G40 |
MSC:
|
60K05 |
MSC:
|
62G05 |
MSC:
|
62M10 |
idZBL:
|
Zbl 1308.62067 |
idMR:
|
MR3301776 |
DOI:
|
10.14736/kyb-2014-6-0869 |
. |
Date available:
|
2015-01-13T09:46:56Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144113 |
. |
Reference:
|
[1] Algoet, P.: Universal schemes for learning the best nonlinear predictor given the infinite past and side information..IEEE Trans. Inform. Theory 45 (1999), 1165-1185. Zbl 0959.62078, MR 1686250, 10.1109/18.761258 |
Reference:
|
[2] Bailey, D. H.: Sequential Schemes for Classifying and Predicting Ergodic Processes..Ph. D. Thesis, Stanford University 1976. MR 2626644 |
Reference:
|
[3] Bunea, F., Nobel, A.: Sequential procedures for aggregating arbitrary estimators of a conditional mean..IEEE Trans. Inform. Theory 54 (2008), 4, 1725-1735. MR 2450298, 10.1109/TIT.2008.917657 |
Reference:
|
[4] Feller, W.: An Introduction to Probability Theory and its Applications. Vol. II. Second edition..John Wiley and Sons, New York - London - Sydney 1971. MR 0270403 |
Reference:
|
[5] Györfi, L., Morvai, G., Yakowitz, S.: Limits to consistent on-line forecasting for ergodic time series..IEEE Trans. Inform. Theory 44 (1998), 886-892. Zbl 0899.62122, MR 1607704, 10.1109/18.661540 |
Reference:
|
[6] Morvai, G., Weiss, B.: Inferring the conditional mean..Theory Stoch. Process. 11 (2005), 112-120. Zbl 1164.62382, MR 2327452 |
Reference:
|
[7] Morvai, G., Weiss, B.: Order estimation of Markov chains..IEEE Trans. Inform. Theory 51 (2005), 1496-1497. MR 2241507, 10.1109/TIT.2005.844093 |
Reference:
|
[8] Morvai, G., Weiss, B.: On sequential estimation and prediction for discrete time series..Stoch. Dyn. 7 (2007), 4, 417-437. Zbl 1255.62228, MR 2378577, 10.1142/S021949370700213X |
Reference:
|
[9] Morvai, G., Weiss, B.: On Universal estimates for binary renewal processes..Ann. Appl. Probab. 18 (2008), 5, 1970-1992. Zbl 1158.62053, MR 2462556, 10.1214/07-AAP512 |
Reference:
|
[10] Morvai, G., Weiss, B.: Estimating the residual waiting time for binary stationary time series..In: Proc. ITW2009, Volos 2009, pp. 67-70. |
Reference:
|
[11] Morvai, G., Weiss, B.: A note on prediction for discrete time series..Kybernetika 48 (2012), 4, 809-823. MR 3013400 |
Reference:
|
[12] Ryabko, B. Ya.: Prediction of random sequences and universal coding..Probl. Inf. Trans. 24 (1988), 87-96. Zbl 0666.94009, MR 0955983 |
Reference:
|
[13] Ryabko, D., Ryabko, B.: Nonparametric statistical inference for ergodic processes..IEEE Trans. Inform. Theory 56 (2010), 3, 1430-1435. MR 2723689, 10.1109/TIT.2009.2039169 |
Reference:
|
[14] Shiryayev, A. N.: Probability..Springer-Verlag, New York 1984. MR 0737192 |
Reference:
|
[15] Takahashi, H.: Computational limits to nonparametric estimation for ergodic processes..IEEE Trans. Inform. Theory 57 (2011), 10, 6995-6999. MR 2882275, 10.1109/TIT.2011.2165791 |
Reference:
|
[16] Zhou, Z., Xu, Z., Wu, W. B.: Long-term prediction intervals of time series..IEEE Trans. Inform. Theory 56 (2010), 3, 1436-1446. MR 2723690, 10.1109/TIT.2009.2039158 |
. |