Previous |  Up |  Next

Article

Title: Comments on the fractional parts of Pisot numbers (English)
Author: Zaïmi, Toufik
Author: Selatnia, Mounia
Author: Zekraoui, Hanifa
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 3
Year: 2015
Pages: 153-161
Summary lang: English
.
Category: math
.
Summary: Let $L(\theta ,\lambda )$ be the set of limit points of the fractional parts $\lbrace \lambda \theta ^{n}\rbrace $, $n=0,1,2, \dots $, where $\theta $ is a Pisot number and $\lambda \in \mathbb{Q}(\theta )$. Using a description of $L(\theta ,\lambda )$, due to Dubickas, we show that there is a sequence $(\lambda _{n})_{n\ge 0}$ of elements of $\mathbb{Q}(\theta )$ such that $\operatorname{Card}\,(L(\theta ,\lambda _{n}))< \operatorname{Card}\,(L(\theta ,\lambda _{n+1}))$, $\forall $ $n\ge 0$. Also, we prove that the fractional parts of Pisot numbers, with a fixed degree greater than 1, are dense in the unit interval. (English)
Keyword: Pisot numbers
Keyword: fractional parts
Keyword: limit points
MSC: 11J71
MSC: 11R04
MSC: 11R06
idZBL: Zbl 06487027
idMR: MR3397268
DOI: 10.5817/AM2015-3-153
.
Date available: 2015-09-09T09:44:53Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144426
.
Reference: [1] Bertin, M.J., Decomps-Guilloux, A., Grandet-Hugo, M., Pathiaux-Delefosse, M., Schreiber, J.P.: Pisot and Salem numbers.Birkhäuser Verlag Basel, 1992. MR 1187044
Reference: [2] Boyd, D.W.: Linear recurrence relations for some generalized Pisot sequences.Advances in Number Theory, Proc. of the 1991 CNTA Conference, Oxford University Press, 1993, pp. 333–340. Zbl 0790.11012, MR 1368431
Reference: [3] Bugeaud, Y.: An introduction to diophantine approximation.Cambridge University Press, Cambridge, 2012. MR 2953186
Reference: [4] Dubickas, A.: On the limit points of the fractional parts of powers of Pisot numbers.Arch. Math. (Brno) 42 (2006), 151–158. Zbl 1164.11026, MR 2240352
Reference: [5] Marcus, D.: Number fields.Springer, Berlin, 1977, 3rd edition. Zbl 0383.12001, MR 0457396
Reference: [6] Smyth, C.J.: The conjugates of algebraic integers.Amer. Math. Monthly 82 (86) (1975).
Reference: [7] Zaïmi, T.: Comments on the distribution modulo one of powers of Pisot and Salem numbers.Publ. Math. Debrecen 80 (2012), 417–426. Zbl 1263.11067, MR 2943014, 10.5486/PMD.2012.5098
Reference: [8] Zaïmi, T.: On the spectra of Pisot numbers.Glasgow Math. J. 54 (2012), 127–132. Zbl 1303.11118, MR 2862390, 10.1017/S0017089511000462
.

Files

Files Size Format View
ArchMathRetro_051-2015-3_3.pdf 495.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo