Previous |  Up |  Next

Article

Title: Neutral set differential equations (English)
Author: Abbas, Umber
Author: Lupulescu, Vasile
Author: O'Regan, Donald
Author: Younus, Awais
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 593-615
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin {equation*} \begin {cases} D_{H}X(t)=F(t,X_{t},D_{H}X_{t}), \\ \kern .25em X|_{[-r,0]}=\Psi , \end {cases} \end {equation*} where $F\colon [0,b]\times \mathcal {C}_{0}\times \mathfrak {L}_{0}^{1}\rightarrow K_{c}(E)$ is a given function, $K_{c}(E)$\ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal {C}_{0}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_{c}(E)$, $\mathfrak {L}_{0}^{1}$ is\ the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_{c}(E)$, $\Psi \in \mathcal {C}_{0}$\ and $D_{H}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied. (English)
Keyword: neutral type
Keyword: existence
Keyword: uniqueness
Keyword: continous dependence
MSC: 34A12
MSC: 34K40
idZBL: Zbl 06537683
idMR: MR3407596
DOI: 10.1007/s10587-015-0199-9
.
Date available: 2015-10-04T18:01:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144434
.
Reference: [1] Abbas, U., Lupulescu, V.: Set functional differential equations.Commun. Appl. Nonlinear Anal. 18 (2011), 97-110. Zbl 1243.34108, MR 2815882
Reference: [2] Beer, G.: Topologies on Closed and Closed Convex Sets.Mathematics and Its Applications 268 Kluwer Academic Publishers, Dordrecht (1993). Zbl 0792.54008, MR 1269778
Reference: [3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations.McGraw-Hill Book Company, New York (1955). Zbl 0064.33002, MR 0069338
Reference: [4] Das, P. C., Parhi, N.: On a functional-differential equation of neutral type.J. Math. Anal. Appl. 35 (1971), 67-82. Zbl 0216.11903, MR 0280830, 10.1016/0022-247X(71)90236-8
Reference: [5] Blasi, F. S. de, Iervolino, F.: Equazioni differenziali con soluzioni a valore compatto convesso.Boll. Unione Mat. Ital., IV. Ser. 2 Italian (1969), 491-501. Zbl 0195.38501
Reference: [6] Blasi, F. S. de, Lakshmikantham, V., Bhaskar, T. Gnana: An existence theorem for set differential inclusions in a semilinear metric space.Control Cybern. 36 (2007), 571-582. MR 2376040
Reference: [7] Debreu, G.: Integration of correspondences.Proc. 5th Berkeley Symp. Math. Stat. Probab. (Univ. Calif. 1965/66). Vol. 2: Contributions to Probability Theory, Part 1 Univ. California Press, Berkeley, Calif. (1967), 351-372. Zbl 0211.52803, MR 0228252
Reference: [8] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional-Differential Equations.Applied Mathematical Sciences 99 Springer, New York (1993). MR 1243878, 10.1007/978-1-4612-4342-7_3
Reference: [9] Himmelberg, C. J.: Precompact contraction of metric uniformities, and the continuity of {$F(t,x)$}.Rend. Semin. Mat. Univ. Padova 50 (1973), 185-188. MR 0355958
Reference: [10] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Vol. I: Theory.Mathematics and Its Applications 419 Kluwer Academic Publishers, Dordrecht (1997). MR 1485775
Reference: [11] Kisielewicz, M.: Some generic properties of functional-differential equations of neutral type.J. Math. Anal. Appl. 97 (1983), 229-244. Zbl 0524.34068, MR 0721240, 10.1016/0022-247X(83)90248-2
Reference: [12] Kisielewicz, M.: Existence theorem for generalized functional-differential equations of neutral type.J. Math. Anal. Appl. 78 (1980), 173-182. Zbl 0461.34009, MR 0595774, 10.1016/0022-247X(80)90220-6
Reference: [13] Lakshmikantham, V., Bhaskar, T. Gnana, Devi, J. Vasundhara: Theory of Set Differential Equations in Metric Spaces.Cambridge Scientific Publishers, Cambridge (2006). MR 2438229
Reference: [14] Lakshmikantham, V., Tolstonogov, A. A.: Existence and interrelation between set and fuzzy differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 55 (2003), 255-268. Zbl 1035.34064, MR 2007473, 10.1016/S0362-546X(03)00228-1
Reference: [15] Li, S., Ogura, Y., Kreinovich, V.: Limit Theorems and Applications of Set-valued and Fuzzy Set-valued Random Variables.Theory and Decision Library. Series B: Mathematical and Statistical Methods 43 Kluwer Academic Publishers Group, Dordrecht (2002). MR 2039695
Reference: [16] Pinto, A. J. B. Lopes, Blasi, F. S. De, Iervolino, F.: Uniqueness and existence theorems for differential equations with compact convex valued solutions.Boll. Unione Mat. Ital., IV. Ser. 3 (1970), 47-54. MR 0259306
Reference: [17] Lupulescu, V.: Successive approximations to solutions of set differential equations in Banach spaces.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 391-401. Zbl 1153.34037, MR 2406754
Reference: [18] Malinowski, M. T.: On set differential equations in Banach spaces---a second type Hukuhara differentiability approach.Appl. Math. Comput. 219 (2012), 289-305. Zbl 1297.34073, MR 2949593, 10.1016/j.amc.2012.06.019
Reference: [19] Malinowski, M. T.: Second type Hukuhara differentiable solutions to the delay set-valued differential equations.Appl. Math. Comput. 218 (2012), 9427-9437. Zbl 1252.34071, MR 2923039, 10.1016/j.amc.2012.03.027
Reference: [20] Malinowski, M. T., Michta, M.: Stochastic set differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1247-1256. Zbl 1184.60018, MR 2577525, 10.1016/j.na.2009.08.015
Reference: [21] Markov, S. M.: Existence and uniqueness of solutions of the interval differential equation {$X^{\prime} =F(t, X)$}.C. R. Acad. Bulg. Sci. 31 (1978), 1519-1522. MR 0548735
Reference: [22] Plotnikov, V. A., Rashkov, P. I.: Averaging in differential equations with Hukuhara derivative and delay.Funct. Differ. Equ. 8 (2001), 371-381. Zbl 1046.34089, MR 1950981
Reference: [23] Tolstonogov, A.: Differential Inclusions in a Banach Space.Mathematics and Its Applications 524 Kluwer Academic Publishers, Dordrecht 2000. Translated from Russian. Zbl 1021.34002, MR 1888331
Reference: [24] Devi, J. Vasundhara, Vatsala, A. S.: A study of set differential equations with delay.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 287-300. MR 2035268
.

Files

Files Size Format View
CzechMathJ_65-2015-3_3.pdf 342.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo