Previous |  Up |  Next

Article

Title: Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere (English)
Author: Baňas, Ľubomír
Author: Brzeźniak, Zdzisław
Author: Neklyudov, Mikhail
Author: Ondreját, Martin
Author: Prohl, Andreas
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 617-657
Summary lang: English
.
Category: math
.
Summary: We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also present a structure-preserving numerical scheme to approximate solutions and provide computational experiments to motivate and illustrate the theoretical results. (English)
Keyword: geometric stochastic wave equation
Keyword: stochastic geodesic equation
Keyword: ergodicity
Keyword: attractivity
Keyword: invariant measure
Keyword: numerical approximation
MSC: 37A25
MSC: 58J65
MSC: 60H10
MSC: 60H15
MSC: 60H35
MSC: 60J60
MSC: 65C20
MSC: 65C30
idZBL: Zbl 06537684
idMR: MR3407597
DOI: 10.1007/s10587-015-0200-7
.
Date available: 2015-10-04T18:05:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144435
.
Reference: [1] Aida, S., Kusuoka, S., Stroock, D.: On the support of Wiener functionals.Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics. Proc. Conf., Sanda and Kyoto, Japan, 1990 K. D. Elworthy et al. Pitman Res. Notes Math. Ser. 284 Longman Scientific & Technical, Harlow, Essex; John Wiley & Sons, New York (1993), 3-34. Zbl 0790.60047, MR 1354161
Reference: [2] Arnold, L., Kliemann, W.: On unique ergodicity for degenerate diffusions.Stochastics 21 (1987), 41-61. Zbl 0617.60076, MR 0899954, 10.1080/17442508708833450
Reference: [3] Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: A convergent finite-element-based discretization of the stochastic Landau-{L}ifshitz-{G}ilbert equation.IMA J. Numer. Anal. 34 (2014), 502-549. Zbl 1298.65012, MR 3194798, 10.1093/imanum/drt020
Reference: [4] Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: Stochastic Ferromagnetism. Analysis and Numerics.De Gruyter Studies in Mathematics 58 De Gruyter, Berlin (2014). Zbl 1288.82001, MR 3157451
Reference: [5] Baňas, Ľ., Prohl, A., Schätzle, R.: Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii.Numer. Math. 115 (2010), 395-432. Zbl 1203.65174, MR 2640052, 10.1007/s00211-009-0282-y
Reference: [6] Bartels, S., Lubich, C., Prohl, A.: Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers.Math. Comput. 78 (2009), 1269-1292. Zbl 1198.65178, MR 2501050, 10.1090/S0025-5718-09-02221-2
Reference: [7] Arous, G. Ben, Grădinaru, M.: Hölder norms and the support theorem for diffusions.C. R. Acad. Sci., Paris, Sér. I 316 French (1993), 283-286. MR 1205200
Reference: [8] Arous, G. Ben, Grădinaru, M., Ledoux, M.: Hölder norms and the support theorem for diffusions.Ann. Inst. Henri Poincaré, Probab. Stat. 30 (1994), 415-436. MR 1288358
Reference: [9] Brzeźniak, Z., Ondreját, M.: Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces.Ann. Probab. 41 (2013), 1938-1977. Zbl 1286.60058, MR 3098063, 10.1214/11-AOP690
Reference: [10] Brzeźniak, Z., Ondreját, M.: Weak solutions to stochastic wave equations with values in Riemannian manifolds.Commun. Partial Differ. Equations 36 (2011), 1624-1653. Zbl 1238.60073, MR 2825605, 10.1080/03605302.2011.574243
Reference: [11] Brzeźniak, Z., Ondreját, M.: Strong solutions to stochastic wave equations with values in Riemannian manifolds.J. Funct. Anal. 253 (2007), 449-481. Zbl 1141.58019, MR 2370085, 10.1016/j.jfa.2007.03.034
Reference: [12] Cabaña, E. M.: On barrier problems for the vibrating string.Z. Wahrscheinlichkeitstheor. Verw. Geb. 22 (1972), 13-24. Zbl 0214.16801, MR 0322974, 10.1007/BF00538902
Reference: [13] Carmona, R., Nualart, D.: Random nonlinear wave equations: propagation of singularities.Ann. Probab. 16 (1988), 730-751. Zbl 0643.60045, MR 0929075, 10.1214/aop/1176991784
Reference: [14] Carmona, R., Nualart, D.: Random nonlinear wave equations: smoothness of the solutions.Probab. Theory Relat. Fields 79 (1988), 469-508. Zbl 0635.60073, MR 0966173, 10.1007/BF00318783
Reference: [15] Chow, P.-L.: Stochastic wave equations with polynomial nonlinearity.Ann. Appl. Probab. 12 (2002), 361-381. Zbl 1017.60071, MR 1890069, 10.1214/aoap/1015961168
Reference: [16] Prato, G. Da, Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems.London Mathematical Society Lecture Note Series 229 Cambridge Univ. Press, Cambridge (1996). Zbl 0849.60052, MR 1417491
Reference: [17] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1992). Zbl 0761.60052, MR 1207136
Reference: [18] Dalang, R. C., Frangos, N. E.: The stochastic wave equation in two spatial dimensions.Ann. Probab. 26 (1998), 187-212. Zbl 0938.60046, MR 1617046, 10.1214/aop/1022855416
Reference: [19] Dalang, R. C., Lévêque, O.: Second-order linear hyperbolic {SPDE}s driven by isotropic Gaussian noise on a sphere.Ann. Probab. 32 (2004), 1068-1099. Zbl 1046.60058, MR 2044674, 10.1214/aop/1079021472
Reference: [20] Diaconis, P., Freedman, D.: On the hit and run process.University of California Berkeley, Statistics Technical Report no. 497, http://stat-reports.lib.berkeley.edu/accessPages/497.html (1997).
Reference: [21] Ginibre, J., Velo, G.: The Cauchy problem for the $ O(N), \Bbb C P(N-1),$ and $G_{\Bbb C}(N, p)$ models.Ann. Phys. 142 (1982), 393-415. MR 0678488, 10.1016/0003-4916(82)90077-X
Reference: [22] Gyöngy, I., Pröhle, T.: On the approximation of stochastic differential equation and on Stroock-{V}aradhan's support theorem.Comput. Math. Appl. 19 (1990), 65-70. Zbl 0711.60051, MR 1026782, 10.1016/0898-1221(90)90082-U
Reference: [23] Hörmander, L.: Hypoelliptic second order differential equations.Acta Math. 119 (1967), 147-171. Zbl 0156.10701, MR 0222474, 10.1007/BF02392081
Reference: [24] Ichihara, K., Kunita, H.: A classification of the second order degenerate elliptic operators and its probabilistic characterization.Z. Wahrscheinlichkeitstheor. Verw. Geb. 30 (1974), 235-254. Zbl 0326.60097, MR 0381007, 10.1007/BF00533476
Reference: [25] Ichihara, K., Kunita, H.: Supplements and corrections to the paper: ``A classification of the second order degenerate elliptic operators and its probabilistic characterization''.Z. Wahrscheinlichkeitstheor. Verw. Geb. 39 (1977), 81-84. Zbl 0382.60069, MR 0488328, 10.1007/BF01844875
Reference: [26] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes.North-Holland Mathematical Library 24 North-Holland; Publishing Co. Tokyo: Kodansha, Amsterdam (1989). Zbl 0684.60040, MR 1011252
Reference: [27] Karczewska, A., Zabczyk, J.: Stochastic {PDE}'s with function-valued solutions.Infinite Dimensional Stochastic Analysis. Proceedings of the Colloquium, Amsterdam, Netherlands, 1999 P. Clément et al. Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet. 52 Royal Netherlands Academy of Arts and Sciences, Amsterdam (2000), 197-216. Zbl 0990.60065, MR 1832378
Reference: [28] Karczewska, A., Zabczyk, J.: A note on stochastic wave equations.Evolution Equations and Their Applications in Physical and Life Sciences. Proc. Conf., Germany, 1999 G. Lumer et al. Lecture Notes in Pure and Appl. Math. 215 Marcel Dekker, New York (2001), 501-511. Zbl 0978.60066, MR 1818028
Reference: [29] Marcus, M., Mizel, V. J.: Stochastic hyperbolic systems and the wave equation.Stochastics Stochastics Rep. 36 (1991), 225-244. Zbl 0739.60059, MR 1128496, 10.1080/17442509108833720
Reference: [30] Maslowski, B., Seidler, J., Vrkoč, I.: Integral continuity and stability for stochastic hyperbolic equations.Differ. Integral Equ. 6 (1993), 355-382. Zbl 0777.35096, MR 1195388
Reference: [31] Matskyavichyus, V.: The support of the solution of a stochastic differential equation.Lith. Math. J. 26 (1986), 91-98 Russian English translation Lith. Math. J. 26 57-62 (1986). MR 0847207
Reference: [32] Mattingly, J. C., Stuart, A. M., Higham, D. J.: Ergodicity for {SDE}s and approximations: locally Lipschitz vector fields and degenerate noise.Stochastic Processes Appl. 101 (2002), 185-232. Zbl 1075.60072, MR 1931266
Reference: [33] Meyn, S., Tweedie, R. L.: Markov Chains and Stochastic Stability.With a prologue by Peter W. Glynn Cambridge University Press Cambridge (2009). Zbl 1165.60001, MR 2509253
Reference: [34] Millet, A., Morien, P.-L.: On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution.Ann. Appl. Probab. 11 (2001), 922-951. Zbl 1017.60072, MR 1865028, 10.1214/aoap/1015345353
Reference: [35] Millet, A., Sanz-Solé, M.: A stochastic wave equation in two space dimension: smoothness of the law.Ann. Probab. 27 (1999), 803-844. MR 1698971, 10.1214/aop/1022677387
Reference: [36] Ondreját, M.: Existence of global martingale solutions to stochastic hyperbolic equations driven by a spatially homogeneous Wiener process.Stoch. Dyn. 6 (2006), 23-52. Zbl 1092.60024, MR 2210680, 10.1142/S0219493706001633
Reference: [37] Ondreját, M.: Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process.J. Evol. Equ. 4 (2004), 169-191. Zbl 1054.60068, MR 2059301, 10.1007/s00028-003-0130-y
Reference: [38] Peszat, S.: The Cauchy problem for a nonlinear stochastic wave equation in any dimension.J. Evol. Equ. 2 (2002), 383-394. MR 1930613, 10.1007/PL00013197
Reference: [39] Peszat, S., Zabczyk, J.: Nonlinear stochastic wave and heat equations.Probab. Theory Relat. Fields 116 (2000), 421-443. Zbl 0959.60044, MR 1749283, 10.1007/s004400050257
Reference: [40] Peszat, S., Zabczyk, J.: Stochastic evolution equations with a spatially homogeneous Wiener process.Stochastic Processes Appl. 72 (1997), 187-204. Zbl 0943.60048, MR 1486552, 10.1016/S0304-4149(97)00089-6
Reference: [41] Shatah, J., Struwe, M.: Geometric Wave Equations.Courant Lecture Notes in Mathematics 2 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1998). Zbl 0993.35001, MR 1674843
Reference: [42] Stroock, D. W., Varadhan, S. R. S.: On the support of diffusion processes with applications to the strong maximum principle.Proc. Conf. Berkeley, Calififornia, 1970/1971, Vol. III: Probability Theory L. M. Le Cam et al. Univ. California Press Berkeley, Calififornia (1972), 333-359. Zbl 0255.60056, MR 0400425
.

Files

Files Size Format View
CzechMathJ_65-2015-3_4.pdf 1.316Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo