Title:
|
Shells of monotone curves (English) |
Author:
|
Mikeš, Josef |
Author:
|
Strambach, Karl |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
677-699 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We determine in $\mathbb {R}^n$ the form of curves $C$ corresponding to strictly monotone functions as well as the components of affine connections $\nabla $ for which any image of $C$ under a compact-free group $\Omega $ of affinities containing the translation group is a geodesic with respect to $\nabla $. Special attention is paid to the case that $\Omega $ contains many dilatations or that $C$ is a curve in $\mathbb {R}^3$. If $C$ is a curve in $\mathbb {R}^3$ and $\Omega $ is the translation group then we calculate not only the components of the curvature and the Weyl tensor but we also decide when $\nabla $ yields a flat or metrizable space and compute the corresponding metric tensor. (English) |
Keyword:
|
geodesic |
Keyword:
|
shell of a curve |
Keyword:
|
affine connection |
Keyword:
|
(pseudo-)Riemannian metric |
Keyword:
|
projective equivalence |
MSC:
|
51H20 |
MSC:
|
53B05 |
MSC:
|
53B20 |
MSC:
|
53B30 |
MSC:
|
53C22 |
idZBL:
|
Zbl 06537686 |
idMR:
|
MR3407599 |
DOI:
|
10.1007/s10587-015-0202-5 |
. |
Date available:
|
2015-10-04T18:09:08Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144437 |
. |
Reference:
|
[1] Betten, D.: Topological shift spaces.Adv. Geom. 5 (2005), 107-118. Zbl 1067.51007, MR 2110464, 10.1515/advg.2005.5.1.107 |
Reference:
|
[2] Betten, D.: Some classes of topological 3-spaces.German Result. Math. 12 (1987), 37-61. Zbl 0631.51006, MR 0911460 |
Reference:
|
[3] Cartan, E.: Les espaces riemanniens symétriques.French Verh. Internat. Math.-Kongr. 1 (1932), 152-161. Zbl 0006.42102 |
Reference:
|
[4] Eisenhart, L. P.: Non-Riemannian geometry.American Mathematical Society Colloquium Publications 8 American Mathematical Society, Providence (1990). MR 1466961 |
Reference:
|
[5] Gerlich, G.: Topological affine planes with affine connections.Adv. Geom. 5 (2005), 265-278. Zbl 1080.51007, MR 2131819, 10.1515/advg.2005.5.2.265 |
Reference:
|
[6] Gerlich, G.: Stable projective planes with Riemannian metrics.Arch. Math. 79 (2002), 317-320. Zbl 1022.51012, MR 1944956, 10.1007/s00013-002-8318-x |
Reference:
|
[7] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl spaces.Proc. 8th Int. Conf. on Appl. Math (APLIMAT 2009) Bratislava 423-430. |
Reference:
|
[8] Irving, R. S.: Integers, Polynomials, and Rings. A Course in Algebra.Undergraduate Texts in Mathematics Springer, New York (2004). Zbl 1046.00002, MR 2025456 |
Reference:
|
[9] Kagan, V. F.: Subprojective Spaces.Russian Bibliothek der Russischen Wissenschaften Mathematik, Mechanik, Physik, Astronomie Staatsverlag für Physikalisch-Mathematische Literatur, Moskva (1961). MR 0131242 |
Reference:
|
[10] Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. 1. Gewöhnliche Differentialgleichungen.German Akademische Verlagsgesellschaft, Leipzig (1942). Zbl 0026.31801 |
Reference:
|
[11] Kamke, E.: Differentialgleichungen Reeller Funktionen.Akademische Verlagsgesellschaft, Leipzig (1930), German. |
Reference:
|
[12] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces.J. Math. Sci., New York 78 (1996), 311-333. MR 1384327, 10.1007/BF02365193 |
Reference:
|
[13] Mikeš, J., Strambach, K.: Grünwald shift spaces.Publ. Math. 83 (2013), 85-96. Zbl 1289.51008, MR 3081228 |
Reference:
|
[14] Mikeš, J., Strambach, K.: Differentiable structures on elementary geometries.Result. Math. 53 (2009), 153-172. MR 2481410, 10.1007/s00025-008-0296-2 |
Reference:
|
[15] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations.Palacký University, Faculty of Science, Olomouc (2009). Zbl 1222.53002, MR 2682926 |
Reference:
|
[16] Norden, A. P.: Spaces with Affine Connection.Russian Nauka Moskva (1976). Zbl 0925.53007, MR 0467565 |
Reference:
|
[17] Petrov, A. Z.: New Methods in the General Theory of Relativity.Russian Hauptredaktion für Physikalisch-Mathematische Literatur Nauka, Moskva (1966). MR 0207365 |
Reference:
|
[18] Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M.: Compact Projective Planes. With an Introduction to Octonion Geometry.De Gruyter Expositions in Mathematics 21 De Gruyter, Berlin (1995). MR 1384300 |
Reference:
|
[19] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces.Russian Nauka Moskva (1979). Zbl 0637.53020, MR 0552022 |
Reference:
|
[20] Yano, K., Bochner, S.: Curvature and Betti Numbers.Annals of Mathematics Studies 32 Princeton University Press 9, Princeton (1953). Zbl 0051.39402, MR 0062505 |
. |