Previous |  Up |  Next

Article

Title: Shells of monotone curves (English)
Author: Mikeš, Josef
Author: Strambach, Karl
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 677-699
Summary lang: English
.
Category: math
.
Summary: We determine in $\mathbb {R}^n$ the form of curves $C$ corresponding to strictly monotone functions as well as the components of affine connections $\nabla $ for which any image of $C$ under a compact-free group $\Omega $ of affinities containing the translation group is a geodesic with respect to $\nabla $. Special attention is paid to the case that $\Omega $ contains many dilatations or that $C$ is a curve in $\mathbb {R}^3$. If $C$ is a curve in $\mathbb {R}^3$ and $\Omega $ is the translation group then we calculate not only the components of the curvature and the Weyl tensor but we also decide when $\nabla $ yields a flat or metrizable space and compute the corresponding metric tensor. (English)
Keyword: geodesic
Keyword: shell of a curve
Keyword: affine connection
Keyword: (pseudo-)Riemannian metric
Keyword: projective equivalence
MSC: 51H20
MSC: 53B05
MSC: 53B20
MSC: 53B30
MSC: 53C22
idZBL: Zbl 06537686
idMR: MR3407599
DOI: 10.1007/s10587-015-0202-5
.
Date available: 2015-10-04T18:09:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144437
.
Reference: [1] Betten, D.: Topological shift spaces.Adv. Geom. 5 (2005), 107-118. Zbl 1067.51007, MR 2110464, 10.1515/advg.2005.5.1.107
Reference: [2] Betten, D.: Some classes of topological 3-spaces.German Result. Math. 12 (1987), 37-61. Zbl 0631.51006, MR 0911460
Reference: [3] Cartan, E.: Les espaces riemanniens symétriques.French Verh. Internat. Math.-Kongr. 1 (1932), 152-161. Zbl 0006.42102
Reference: [4] Eisenhart, L. P.: Non-Riemannian geometry.American Mathematical Society Colloquium Publications 8 American Mathematical Society, Providence (1990). MR 1466961
Reference: [5] Gerlich, G.: Topological affine planes with affine connections.Adv. Geom. 5 (2005), 265-278. Zbl 1080.51007, MR 2131819, 10.1515/advg.2005.5.2.265
Reference: [6] Gerlich, G.: Stable projective planes with Riemannian metrics.Arch. Math. 79 (2002), 317-320. Zbl 1022.51012, MR 1944956, 10.1007/s00013-002-8318-x
Reference: [7] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl spaces.Proc. 8th Int. Conf. on Appl. Math (APLIMAT 2009) Bratislava 423-430.
Reference: [8] Irving, R. S.: Integers, Polynomials, and Rings. A Course in Algebra.Undergraduate Texts in Mathematics Springer, New York (2004). Zbl 1046.00002, MR 2025456
Reference: [9] Kagan, V. F.: Subprojective Spaces.Russian Bibliothek der Russischen Wissenschaften Mathematik, Mechanik, Physik, Astronomie Staatsverlag für Physikalisch-Mathematische Literatur, Moskva (1961). MR 0131242
Reference: [10] Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. 1. Gewöhnliche Differentialgleichungen.German Akademische Verlagsgesellschaft, Leipzig (1942). Zbl 0026.31801
Reference: [11] Kamke, E.: Differentialgleichungen Reeller Funktionen.Akademische Verlagsgesellschaft, Leipzig (1930), German.
Reference: [12] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces.J. Math. Sci., New York 78 (1996), 311-333. MR 1384327, 10.1007/BF02365193
Reference: [13] Mikeš, J., Strambach, K.: Grünwald shift spaces.Publ. Math. 83 (2013), 85-96. Zbl 1289.51008, MR 3081228
Reference: [14] Mikeš, J., Strambach, K.: Differentiable structures on elementary geometries.Result. Math. 53 (2009), 153-172. MR 2481410, 10.1007/s00025-008-0296-2
Reference: [15] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations.Palacký University, Faculty of Science, Olomouc (2009). Zbl 1222.53002, MR 2682926
Reference: [16] Norden, A. P.: Spaces with Affine Connection.Russian Nauka Moskva (1976). Zbl 0925.53007, MR 0467565
Reference: [17] Petrov, A. Z.: New Methods in the General Theory of Relativity.Russian Hauptredaktion für Physikalisch-Mathematische Literatur Nauka, Moskva (1966). MR 0207365
Reference: [18] Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M.: Compact Projective Planes. With an Introduction to Octonion Geometry.De Gruyter Expositions in Mathematics 21 De Gruyter, Berlin (1995). MR 1384300
Reference: [19] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces.Russian Nauka Moskva (1979). Zbl 0637.53020, MR 0552022
Reference: [20] Yano, K., Bochner, S.: Curvature and Betti Numbers.Annals of Mathematics Studies 32 Princeton University Press 9, Princeton (1953). Zbl 0051.39402, MR 0062505
.

Files

Files Size Format View
CzechMathJ_65-2015-3_6.pdf 350.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo