Title:
|
Baire classes of complex $L_1$-preduals (English) |
Author:
|
Ludvík, Pavel |
Author:
|
Spurný, Jiří |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
659-676 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a complex \mbox {$L_1$-predual}, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire-$\alpha $ functions on the set $\mathop {\rm ext} B_{X^*}$ of the extreme points of the dual unit ball $B_{X^*}$ to the whole unit ball $B_{X^*}$. As a corollary we show that, given $\alpha \in [1,\omega _1)$, the intrinsic \mbox {$\alpha $-th} Baire class of $X$ can be identified with the space of bounded homogeneous Baire-$\alpha $ functions on the set $\mathop {\rm ext} B_{X^*}$ when $\mathop {\rm ext} B_{X^*}$ satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors' paper: Baire classes of non-separable $L_1$-preduals (2015). As such it generalizes former work of Lindenstrauss and Wulbert (1969), Jellett (1985), and ourselves (2014), (2015). (English) |
Keyword:
|
complex $L_1$-predual |
Keyword:
|
extreme point |
Keyword:
|
Baire function |
MSC:
|
26A21 |
MSC:
|
46B20 |
MSC:
|
46B25 |
idZBL:
|
Zbl 06537685 |
idMR:
|
MR3407598 |
DOI:
|
10.1007/s10587-015-0201-6 |
. |
Date available:
|
2015-10-04T18:07:25Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144436 |
. |
Reference:
|
[1] Alfsen, E. M.: Compact Convex Sets and Boundary Integrals.Ergebnisse der Mathematik und ihrer Grenzgebiete 57 Springer, New York (1971). Zbl 0209.42601, MR 0445271 |
Reference:
|
[2] Argyros, S. A., Godefroy, G., Rosenthal, H. P.: Descriptive set theory and Banach spaces.Handbook of the Geometry of Banach Spaces, Vol. 2 W. B. Johnson et al. North-Holland Amsterdam (2003), 1007-1069. Zbl 1121.46008, MR 1999190, 10.1016/S1874-5849(03)80030-X |
Reference:
|
[3] Effros, E. G.: On a class of complex Banach spaces.Ill. J. Math. 18 (1974), 48-59. Zbl 0291.46011, MR 0328548, 10.1215/ijm/1256051348 |
Reference:
|
[4] Ellis, A. J., Rao, T. S. S. R. K., Roy, A. K., Uttersrud, U.: Facial characterizations of complex Lindenstrauss spaces.Trans. Am. Math. Soc. 268 (1981), 173-186. Zbl 0538.46013, MR 0628453, 10.1090/S0002-9947-1981-0628453-7 |
Reference:
|
[5] Holický, P., Kalenda, O.: Descriptive properties of spaces of measures.Bull. Pol. Acad. Sci., Math. 47 (1999), 37-51. Zbl 0929.54026, MR 1685676 |
Reference:
|
[6] Hustad, O.: Intersection properties of balls in complex Banach spaces whose duals are {$L_1$} spaces.Acta Math. 132 (1974), 283-313. Zbl 0309.46025, MR 0388049, 10.1007/BF02392118 |
Reference:
|
[7] Jellett, F.: On affine extensions of continuous functions defined on the extreme boundary of a Choquet simplex.Q. J. Math., Oxf. II. Ser. 36 (1985), 71-73. Zbl 0582.46010, MR 0780351, 10.1093/qmath/36.1.71 |
Reference:
|
[8] Kuratowski, K.: Topology. Vol. I.New edition, revised and augmented Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw (1966). Zbl 0158.40901, MR 0217751 |
Reference:
|
[9] Lacey, H. E.: The Isometric Theory of Classical Banach Spaces.Die Grundlehren der mathematischen Wissenschaften 208 Springer, New York (1974). Zbl 0285.46024, MR 0493279 |
Reference:
|
[10] Lazar, A. J.: The unit ball in conjugate $L_1$ spaces.Duke Math. J. 39 (1972), 1-8. MR 0303242, 10.1215/S0012-7094-72-03901-4 |
Reference:
|
[11] Lima, A.: Complex Banach spaces whose duals are $L_1$-spaces.Isr. J. Math. 24 (1976), 59-72. Zbl 0334.46014, MR 0425584, 10.1007/BF02761429 |
Reference:
|
[12] Lindenstrauss, J., Wulbert, D. E.: On the classification of the Banach spaces whose duals are $L_1$ spaces.J. Funct. Anal. 4 (1969), 332-349. MR 0250033, 10.1016/0022-1236(69)90003-2 |
Reference:
|
[13] Ludvík, P., Spurný, J.: Baire classes of non-separable $L_1$-preduals.Q. J. Math. 66 (2015), 251-263. MR 3356290, 10.1093/qmath/hau007 |
Reference:
|
[14] Ludvík, P., Spurný, J.: Baire classes of $L_1$-preduals and $C^*$-algebras.Ill. J. Math. 58 (2014), 97-112. MR 3331842, 10.1215/ijm/1427897169 |
Reference:
|
[15] Ludvík, P., Spurný, J.: Descriptive properties of elements of biduals of Banach spaces.Stud. Math. 209 (2012), 71-99. MR 2914930, 10.4064/sm209-1-6 |
Reference:
|
[16] Lukeš, J., Malý, J., Netuka, I., Spurný, J.: Integral Representation Theory: Applications to Convexity, Banach Spaces and Potential Theory.De Gruyter Studies in Mathematics 35 Walter de Gruyter, Berlin (2010). Zbl 1216.46003, MR 2589994 |
Reference:
|
[17] Lusky, W.: Every separable $L_1$-predual is complemented in a $C^*$-algebra.Stud. Math. 160 (2004), 103-116. Zbl 1054.46009, MR 2033145, 10.4064/sm160-2-1 |
Reference:
|
[18] Olsen, G. H.: On the classification of complex Lindenstrauss spaces.Math. Scand. 35 (1975), 237-258. Zbl 0325.46021, MR 0367626, 10.7146/math.scand.a-11550 |
Reference:
|
[19] Rogers, C. A., Jayne, J. E.: $K$-analytic sets.Analytic Sets. Lectures delivered at the London Mathematical Society Instructional Conference on Analytic Sets held at University College, University of London, 1978. Academic Press London (1980), 1-181. MR 0608794 |
Reference:
|
[20] Roy, A. K.: Convex functions on the dual ball of a complex Lindenstrauss space.J. Lond. Math. Soc., II. Ser. 20 (1979), 529-540. Zbl 0421.46008, MR 0561144, 10.1112/jlms/s2-20.3.529 |
Reference:
|
[21] Rudin, W.: Real and Complex Analysis.McGraw-Hill New York (1987). Zbl 0925.00005, MR 0924157 |
Reference:
|
[22] Talagrand, M.: A new type of affine Borel function.Math. Scand. 54 (1984), 183-188. Zbl 0562.46005, MR 0757461, 10.7146/math.scand.a-12052 |
. |