Previous |  Up |  Next

Article

Title: A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency (English)
Author: Guo, Song-Tao
Author: Hou, Hailong
Author: Xu, Yong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 781-785
Summary lang: English
.
Category: math
.
Summary: A graph $X$, with a group $G$ of automorphisms of $X$, is said to be $(G,s)$-transitive, for some $s\geq 1$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs. Let $X$ be a connected $(G,s)$-transitive graph of prime valency $p\geq 5$, and $G_v$ the vertex stabilizer of a vertex $v\in V(X)$. Suppose that $G_v$ is solvable. Weiss (1974) proved that $|G_v|\mid p(p-1)^2$. In this paper, we prove that $G_v\cong (\mathbb Z_p\rtimes \mathbb Z_m)\times \mathbb Z_n$ for some positive integers $m$ and $n$ such that $n\div m$ and $m\mid p-1$. (English)
Keyword: symmetric graph
Keyword: $s$-transitive graph
Keyword: $(G,s)$-transitive graph
MSC: 05C25
MSC: 20B25
idZBL: Zbl 06537691
idMR: MR3407604
DOI: 10.1007/s10587-015-0207-0
.
Date available: 2015-10-04T18:17:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144442
.
Reference: [1] Conder, M., Dobcsányi, P.: Trivalent symmetric graphs on up to 768 vertices.J. Comb. Math. Comb. Comput. 40 (2002), 41-63. Zbl 0996.05069, MR 1887966
Reference: [2] Dixon, J. D., Mortimer, B.: Permutation Groups.Graduate Texts in Mathematics 163 Springer, New York (1996). Zbl 0951.20001, MR 1409812
Reference: [3] Djoković, D. Ž.: A class of finite group-amalgams.Proc. Am. Math. Soc. 80 (1980), 22-26. Zbl 0441.20015, MR 0574502, 10.2307/2042139
Reference: [4] Djoković, D. Ž., Miller, G. L.: Regular groups of automorphisms of cubic graphs.J. Comb. Theory, Ser. B 29 (1980), 195-230. Zbl 0385.05040, MR 0586434, 10.1016/0095-8956(80)90081-7
Reference: [5] Feng, Y.-Q., Kwak, J. H.: Cubic symmetric graphs of order a small number times a prime or a prime square.J. Comb. Theory, Ser. B 97 (2007), 627-646. Zbl 1118.05043, MR 2325802, 10.1016/j.jctb.2006.11.001
Reference: [6] Guo, S.-T., Feng, Y.-Q.: A note on pentavalent {$s$}-transitive graphs.Discrete Math. 312 (2012), 2214-2216. Zbl 1246.05105, MR 2926093, 10.1016/j.disc.2012.04.015
Reference: [7] Huppert, B.: Endliche Gruppen I.Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [8] Potočnik, P.: A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index {$(4,2)$}.Eur. J. Comb. 30 (2009), 1323-1336. Zbl 1208.05056, MR 2514656, 10.1016/j.ejc.2008.10.001
Reference: [9] Weiss, R.: Presentations for {$(G,s)$}-transitive graphs of small valency.Math. Proc. Camb. Philos. Soc. 101 (1987), 7-20. MR 0877697, 10.1017/S0305004100066378
Reference: [10] Weiss, R.: {$s$}-transitive graphs. Colloq. Math. Soc. János Bolyai 25 North-Holland, Amsterdam (1981), 827-847. Algebraic Methods in Graph Theory, Vol. II L. Lovász et al.; Conf. Szeged, 1978 Zbl 0475.05040, MR 0642075
Reference: [11] Weiss, R.: An application of {$p$}-factorization methods to symmetric graphs.Math. Proc. Camb. Philos. Soc. 85 (1979), 43-48. Zbl 0392.20002, MR 0510398, 10.1017/S030500410005547X
Reference: [12] Weiss, R.: Groups with a {$(B,N)$}-pair and locally transitive graphs.Nagoya Math. J. 74 (1979), 1-21. Zbl 0381.20004, MR 0535958, 10.1017/S0027763000018420
Reference: [13] Weiss, R. M.: Über symmetrische Graphen, deren Valenz eine Primzahl ist.Math. Z. 136 German (1974), 277-278. Zbl 0268.05110, MR 0360348
Reference: [14] Wielandt, H.: Finite Permutation Groups.Academic Press New York (1964). Zbl 0138.02501, MR 0183775
Reference: [15] Zhou, J.-X., Feng, Y.-Q.: On symmetric graphs of valency five.Discrete Math. 310 (2010), 1725-1732. Zbl 1225.05131, MR 2610275, 10.1016/j.disc.2009.11.019
.

Files

Files Size Format View
CzechMathJ_65-2015-3_11.pdf 230.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo