Title:
|
A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency (English) |
Author:
|
Guo, Song-Tao |
Author:
|
Hou, Hailong |
Author:
|
Xu, Yong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
781-785 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A graph $X$, with a group $G$ of automorphisms of $X$, is said to be $(G,s)$-transitive, for some $s\geq 1$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs. Let $X$ be a connected $(G,s)$-transitive graph of prime valency $p\geq 5$, and $G_v$ the vertex stabilizer of a vertex $v\in V(X)$. Suppose that $G_v$ is solvable. Weiss (1974) proved that $|G_v|\mid p(p-1)^2$. In this paper, we prove that $G_v\cong (\mathbb Z_p\rtimes \mathbb Z_m)\times \mathbb Z_n$ for some positive integers $m$ and $n$ such that $n\div m$ and $m\mid p-1$. (English) |
Keyword:
|
symmetric graph |
Keyword:
|
$s$-transitive graph |
Keyword:
|
$(G,s)$-transitive graph |
MSC:
|
05C25 |
MSC:
|
20B25 |
idZBL:
|
Zbl 06537691 |
idMR:
|
MR3407604 |
DOI:
|
10.1007/s10587-015-0207-0 |
. |
Date available:
|
2015-10-04T18:17:41Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144442 |
. |
Reference:
|
[1] Conder, M., Dobcsányi, P.: Trivalent symmetric graphs on up to 768 vertices.J. Comb. Math. Comb. Comput. 40 (2002), 41-63. Zbl 0996.05069, MR 1887966 |
Reference:
|
[2] Dixon, J. D., Mortimer, B.: Permutation Groups.Graduate Texts in Mathematics 163 Springer, New York (1996). Zbl 0951.20001, MR 1409812 |
Reference:
|
[3] Djoković, D. Ž.: A class of finite group-amalgams.Proc. Am. Math. Soc. 80 (1980), 22-26. Zbl 0441.20015, MR 0574502, 10.2307/2042139 |
Reference:
|
[4] Djoković, D. Ž., Miller, G. L.: Regular groups of automorphisms of cubic graphs.J. Comb. Theory, Ser. B 29 (1980), 195-230. Zbl 0385.05040, MR 0586434, 10.1016/0095-8956(80)90081-7 |
Reference:
|
[5] Feng, Y.-Q., Kwak, J. H.: Cubic symmetric graphs of order a small number times a prime or a prime square.J. Comb. Theory, Ser. B 97 (2007), 627-646. Zbl 1118.05043, MR 2325802, 10.1016/j.jctb.2006.11.001 |
Reference:
|
[6] Guo, S.-T., Feng, Y.-Q.: A note on pentavalent {$s$}-transitive graphs.Discrete Math. 312 (2012), 2214-2216. Zbl 1246.05105, MR 2926093, 10.1016/j.disc.2012.04.015 |
Reference:
|
[7] Huppert, B.: Endliche Gruppen I.Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3 |
Reference:
|
[8] Potočnik, P.: A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index {$(4,2)$}.Eur. J. Comb. 30 (2009), 1323-1336. Zbl 1208.05056, MR 2514656, 10.1016/j.ejc.2008.10.001 |
Reference:
|
[9] Weiss, R.: Presentations for {$(G,s)$}-transitive graphs of small valency.Math. Proc. Camb. Philos. Soc. 101 (1987), 7-20. MR 0877697, 10.1017/S0305004100066378 |
Reference:
|
[10] Weiss, R.: {$s$}-transitive graphs. Colloq. Math. Soc. János Bolyai 25 North-Holland, Amsterdam (1981), 827-847. Algebraic Methods in Graph Theory, Vol. II L. Lovász et al.; Conf. Szeged, 1978 Zbl 0475.05040, MR 0642075 |
Reference:
|
[11] Weiss, R.: An application of {$p$}-factorization methods to symmetric graphs.Math. Proc. Camb. Philos. Soc. 85 (1979), 43-48. Zbl 0392.20002, MR 0510398, 10.1017/S030500410005547X |
Reference:
|
[12] Weiss, R.: Groups with a {$(B,N)$}-pair and locally transitive graphs.Nagoya Math. J. 74 (1979), 1-21. Zbl 0381.20004, MR 0535958, 10.1017/S0027763000018420 |
Reference:
|
[13] Weiss, R. M.: Über symmetrische Graphen, deren Valenz eine Primzahl ist.Math. Z. 136 German (1974), 277-278. Zbl 0268.05110, MR 0360348 |
Reference:
|
[14] Wielandt, H.: Finite Permutation Groups.Academic Press New York (1964). Zbl 0138.02501, MR 0183775 |
Reference:
|
[15] Zhou, J.-X., Feng, Y.-Q.: On symmetric graphs of valency five.Discrete Math. 310 (2010), 1725-1732. Zbl 1225.05131, MR 2610275, 10.1016/j.disc.2009.11.019 |
. |