Previous |  Up |  Next

Article

Title: Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity (English)
Author: Stanković, Mića S.
Author: Zlatanović, Milan L.
Author: Vesić, Nenad O.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 787-799
Summary lang: English
.
Category: math
.
Summary: We study $G$-almost geodesic mappings of the second type $\underset \theta \to \pi _2(e)$, $\theta =1,2$ between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider $e$-structures that generate mappings of type $\underset \theta \to \pi _2(e)$, $\theta =1,2$. For a mapping $\underset \theta \to \pi _2(e,F)$, $\theta =1,2$, we determine the basic equations which generate them. (English)
Keyword: non-symmetric affine connection
Keyword: almost geodesic mapping
Keyword: $G$-almost geodesic mapping
Keyword: property of reciprocity
Keyword: almost geodesic mapping of the second type
MSC: 53B05
MSC: 53B20
MSC: 53C15
idZBL: Zbl 06537692
idMR: MR3407605
DOI: 10.1007/s10587-015-0208-z
.
Date available: 2015-10-04T18:19:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144443
.
Reference: [1] Berezovskij, V., Mikeš, J.: On a classification of almost geodesic mappings of affine connection spaces.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 35 (1996), 21-24. MR 1485039
Reference: [2] Berezovski, V. E., Mikeš, J., Vanžurová, A.: Fundamental PDE's of the canonical almost geodesic mappings of type ${\tilde\pi_1}$.Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 647-659. Zbl 1298.53018, MR 3234506
Reference: [3] Hall, G. S., Lonie, D. P.: Projective equivalence of Einstein spaces in general relativity.Classical Quantum Gravity 26 (2009), Article ID 125009, 10 pages. Zbl 1170.83443, MR 2515670, 10.1088/0264-9381/26/12/125009
Reference: [4] Hall, G. S., Lonie, D. P.: The principle of equivalence and cosmological metrics.J. Math. Phys. 49 Article ID 022502, 13 pages (2008). Zbl 1153.81370, MR 2392851
Reference: [5] Hall, G. S., Lonie, D. P.: The principle of equivalence and projective structure in spacetimes.Classical Quantum Gravity 24 (2007), 3617-3636. Zbl 1206.83036, MR 2339411, 10.1088/0264-9381/24/14/005
Reference: [6] Hinterleitner, I.: Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature.Publ. Inst. Math. (Beograd) (N.S.) 94 (2013), 125-130, DOI:10.2298/PIM1308125H. MR 3137496, 10.2298/PIM1308125H
Reference: [7] Hinterleitner, I., Mikeš, J.: Geodesic mappings and Einstein spaces.Geometric Methods in Physics P. Kielanowski, et al. Selected papers of 30. workshop, Białowie$\dot z$a, 2011. Trends in Mathematics Birkhäuser, Basel (2013), 331-335. Zbl 1268.53049, MR 2882715
Reference: [8] Hinterleitner, I., Mikeš, J.: Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability.Miskolc Math. Notes 14 (2013), 575-582. MR 3144094, 10.18514/MMN.2013.918
Reference: [9] Mikeš, J.: Holomorphically projective mappings and their generalizations.J. Math. Sci., New York 89 (1998), 1334-1353 translation from Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30 258-291 (1995). MR 1619720, 10.1007/BF02414875
Reference: [10] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces.J. Math. Sci., New York 78 (1996), 311-333. MR 1384327, 10.1007/BF02365193
Reference: [11] Mikeš, J.: Geodesic mappings of Einstein spaces.Math. Notes 28 (1981), 922-923 translation from Mat. Zametki 28 935-938, DOI:10.1007/BF01709156 Russian (1980). Zbl 0454.53018, MR 0603226, 10.1007/BF01709156
Reference: [12] Mikeš, J., Pokorná, O., Starko, G.: On almost geodesic mappings ${\pi_2(e)}$ onto Riemannian spaces.J. Slovák, et al. The Proceedings of the 23th Winter School Geometry and Physics, Srní, 2003 Circolo Matemàtico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 72 (2004), 151-157. Zbl 1050.53021, MR 2069403
Reference: [13] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations.Palacký University, Faculty of Science, Olomouc (2009). Zbl 1222.53002, MR 2682926
Reference: [14] Minčić, S. M.: New commutation formulas in the non-symmetric affine connexion space.Publ. Inst. Math., Nouv. Sér. 22 (1977), 189-199. Zbl 0377.53008, MR 0482552
Reference: [15] Minčić, S. M.: Ricci identities in the space of non-symmetric affine connexion.Mat. Vesn., N. Ser. 10 (1973), 161-172. Zbl 0278.53012, MR 0341310
Reference: [16] Minčić, S. M., Stanković, M. S.: Equitorsion geodesic mappings of generalized Riemannian spaces.Publ. Inst. Math., Nouv. Sér. 61 (1997), 97-104. Zbl 0886.53035, MR 1472941
Reference: [17] Minčić, S., Stanković, M.: On geodesic mappings of general affine connexion spaces and of generalized Riemannian spaces.Mat. Vesn. 49 (1997), 27-33. Zbl 0949.53013, MR 1491944
Reference: [18] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces.Russian Nauka, Moskva (1979). Zbl 0637.53020, MR 0552022
Reference: [19] Stanković, M.: On a special almost geodesic mapping of third type of affine spaces.Novi Sad J. Math. 31 (2001), 125-135. Zbl 1012.53013, MR 1897496
Reference: [20] Stanković, M. S.: First type almost geodesic mappings of general affine connection spaces.Novi Sad J. Math. 29 (1999), 313-323. Zbl 0951.53011, MR 1771009
Reference: [21] Stanković, M. S.: On canonic almost geodesic mappings of the second type of affine spaces.Filomat 13 (1999), 105-114. Zbl 0971.53011, MR 1803017
Reference: [22] Stanković, M. S., Minčić, S. M.: New special geodesic mappings of generalized Riemannian spaces.Publ. Inst. Math., Nouv. Sér. 67 (2000), 92-102. Zbl 1013.53009, MR 1761305
Reference: [23] Vavříková, H., Mikeš, J., Pokorná, O., Starko, G.: On fundamental equations of almost geodesic mappings of type ${\pi_2(e)}$.Russ. Math. 51 8-12 (2007), translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2007 10-15 (2007), Russian. Zbl 1143.53019, MR 2335593, 10.3103/S1066369X07010021
.

Files

Files Size Format View
CzechMathJ_65-2015-3_12.pdf 267.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo