Previous |  Up |  Next

Article

Title: On the composition structure of the twisted Verma modules for $\mathfrak{sl}(3,\mathbb{C})$ (English)
Author: Křižka, Libor
Author: Somberg, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 315-329
Summary lang: English
.
Category: math
.
Summary: We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra $\mathfrak{sl}(3, \mathbb{C})$, including the explicit structure of singular vectors for both $\mathfrak{sl}(3, \mathbb{C})$ and one of its Lie subalgebras $\mathfrak{sl}(2, \mathbb{C})$, and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as ${D}$-modules on the Schubert cells in the full flag manifold for $\mathop {\rm SL} \nolimits (3, \mathbb{C})$. (English)
Keyword: Lie algebra $\mathfrak{sl}(3,\mathbb{C})$
Keyword: twisted Verma modules
Keyword: composition structure
Keyword: $\mathcal{D}$-modules
MSC: 22E47
MSC: 33C45
MSC: 53A30
MSC: 58J70
idZBL: Zbl 06537733
idMR: MR3449111
DOI: 10.5817/AM2015-5-315
.
Date available: 2016-01-11T10:11:28Z
Last updated: 2017-02-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144773
.
Reference: [1] Abe, N.: On the existence of homomorphisms between principal series representations of complex semisimple Lie groups.J. Algebra 330 (1) (2011), 468–481. Zbl 1220.22011, MR 2774640, 10.1016/j.jalgebra.2010.11.012
Reference: [2] Andersen, H.H., Lauritzen, N.: Twisted Verma modules.Studies in Memory of Issai Schur, Progress in Mathematics, vol. 210, Birkhäuser, Boston, 2003, pp. 1–26. Zbl 1079.17002, MR 1985191
Reference: [3] Beilinson, A.A., Bernstein, J.N.: Localisation de $\mathfrak{g}$-modules.C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18. MR 0610137
Reference: [4] Feigin, B.L., Frenkel, E.V.: Affine Kac-Moody algebras and semi-infinite flag manifolds.Comm. Math. Phys. 128 (1) (1990), 161–189. Zbl 0722.17019, MR 1042449, 10.1007/BF02097051
Reference: [5] Fischer, E.: Über die Differentiationsprozesse der Algebra.J. Reine Angew. Math. 148 (1918), 1–78. MR 1580952
Reference: [6] Frenkel, E.V., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves.Mathematical Surveys and Monographs, vol. 88, Amer. Math. Soc. Providence, 2004. Zbl 1106.17035, MR 2082709
Reference: [7] Hotta, R., Takeuchi, K., Tanisaki, T.: $\mathcal{D}$-Modules, Perverse Sheaves, and Representation Theory.Progress in Mathematics, vol. 236, Birkhäuser Boston, 2008. MR 2357361
Reference: [8] Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category $\mathcal{O}$.Graduate Studies in Mathematics, Amer. Math. soc. Providence, 2008. MR 2428237
Reference: [9] Kashiwara, M.: Representaion theory and $\mathcal{D}$-modules on flag varieties.Astérisque 173–174 (1989), 55–109. MR 1021510
Reference: [10] Kobayashi, T.: Restrictions of generalized Verma modules to symmetric pairs.Transform. Groups 17 (2) (2012), 523–546. Zbl 1257.22014, MR 2921076, 10.1007/s00031-012-9180-y
Reference: [11] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I.Adv. Math. 285 (2015), 1–57. Zbl 1327.53044, MR 3406542
Reference: [12] Křižka, L., Somberg, P.: Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type I.: $A_n$-series.(2015) arXiv:1502.07095.
Reference: [13] Mazorchuk, V., Stroppel, C.: Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module.Trans. Amer. Math. Soc. 357 (2005), 2939–2973. Zbl 1095.17001, MR 2139933, 10.1090/S0002-9947-04-03650-5
Reference: [14] Soergel, W.: Character formulas for tilting modules over Kac-Moody algebras.Represent. Theory 2 (1998), 432–448. Zbl 0964.17018, MR 1663141, 10.1090/S1088-4165-98-00057-0
.

Files

Files Size Format View
ArchMathRetro_051-2015-5_7.pdf 619.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo