Previous |  Up |  Next

Article

Title: Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions (English)
Author: Pandžić, Pavle
Author: Somberg, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 331-346
Summary lang: English
.
Category: math
.
Summary: We study certain ${\mathfrak{sl}}(2,\mathbb{C})$-actions associated to specific examples of branching of scalar generalized Verma modules for compatible pairs $(\mathfrak{g},\mathfrak{p})$, $(\mathfrak{g}^{\prime },\mathfrak{p}^{\prime })$ of Lie algebras and their parabolic subalgebras. (English)
Keyword: representation theory of simple Lie algebra
Keyword: generalized Verma modules
Keyword: singular vectors and composition series
Keyword: relative Lie algebra and Dirac cohomology
MSC: 22E47
idZBL: Zbl 06537734
idMR: MR3449112
DOI: 10.5817/AM2015-5-331
.
Date available: 2016-01-11T10:12:28Z
Last updated: 2017-02-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144774
.
Reference: [1] Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras.Trans. Amer. Math. Soc. 63 (1948), 85–124. Zbl 0031.24803, MR 0024908, 10.1090/S0002-9947-1948-0024908-8
Reference: [2] Huang, J.-S., Pandžić, P.: Dirac operators in representation theory.Mathematics: Theory and Applications, Birkhäuser Boston, 2006, pp. xii+199. Zbl 1103.22008, MR 2244116
Reference: [3] Huang, J.-S., Xiao, W.: Dirac cohomology of highest weight modules.Selecta Math. (N.S.) 18 (4) (2012), 803–824. Zbl 1257.22012, MR 3000469, 10.1007/s00029-011-0085-8
Reference: [4] Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category ${mathcal O}$.Grad. Stud. Math., vol. 94, 2008. MR 2428237, 10.1090/gsm/094/01
Reference: [5] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. II.preprint.
Reference: [6] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I.Adv. Math. 285 (2015), 1–57. Zbl 1327.53044, MR 3406542
Reference: [7] Kobayashi, T., Pevzner, M.: Differential symmetry breaking operators. I-General theory and F-method. II-Rankin-Cohen operators for symmetric pairs.to appear in Selecta Math., arXiv:1301.2111.
Reference: [8] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem.Ann. of Math. (2) 74 (2) (1961), 329–387. Zbl 0134.03501, MR 0142696, 10.2307/1970237
Reference: [9] Kostant, B.: Verma modules and the existence of quasi-invariant differential operators.Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. MR 0396853
Reference: [10] Pandžić, P., Somberg, P.: Higher Dirac cohomology of modules with generalized infinitesimal character.to appear in Transform. Groups, arXiv:1310.3570.
.

Files

Files Size Format View
ArchMathRetro_051-2015-5_8.pdf 564.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo